Выпадают ресницы. Что делать? Стоит ли обратиться к врачу

💖 Нравится? Поделись с друзьями ссылкой

Адипиновой кислотой называется пищевая добавка, причисляемая к группе антиоксидантов. Если говорить о ней с физической точки зрения, то вещество представляет собой кристаллы, не имеющие цвета. С химической точки зрения добавка обладает всеми свойствами, которые характерны для карбоновых кислот. Способна образовывать соли, которые обладают высокой степенью растворения в воде. Этот антиоксидант может иметь синтетическое или природное происхождение. Адипиновая кислота обладает способностью защищать продукты питания от порчи, прогоркания, процессов окисления. Какой класс опасности адипиновой кислоты? Класс опасности адипиновой кислоты второй.

Сфера применения

Европейским союзом адипиновая кислота утверждена как пищевая добавка, которая разрешена к использованию в производстве пищевых продуктов. Однако данное вещество еще полностью не изучено, в связи с этим точный статус неизвестен. Именно поэтому его применение в некоторых странах попросту запрещено ввиду возможного ее вреда для человеческого здоровья.

В природной среде кислота содержится в сахарном тростнике и соке сахарной свеклы. В промышленных целях ее получают путем химического синтеза из циклогексана. Данный метод является одним из наиболее популярных.

Сферы применения:

  • в качестве пищевой добавки под номером Е355 с целью придания продуктам питания кислого вкуса, в том числе во время производства безалкогольных напитков;
  • в качестве сырья при производстве полигексаметиленадипинамида, ее эфиров и полиуретанов;
  • с целью удаления остатков материала, которые остаются после заполнения швов, образующихся между керамическими плитками;
  • как основной ингредиент средств, которые предназначены для удаления накипи;
  • с целью получения промежуточных продуктов синтеза;
  • в оттеночных ополаскивателях и иных средствах для окрашивания волос;
  • в качестве смазочных масел и пластификаторов, поскольку обладает высокой степенью этерификации в ди- и моноэфиры, образует полиэфиры с гликолями.

На территории государств, где данная пищевая добавка признана пригодной для применения, она используется как регулятор кислотности во время изготовления напитков, карамельных конфет, иных продуктов питания с целью поддержания необходимого уровня водородного показателя. Добавляется в некоторые виды ароматизированных сухих десертов, однако только в строго установленном количестве, которое не должно превосходить 1 г на килограмм готового продукта. В порошковых смесях с целью приготовления напитков допускается до четырех грамм кислоты на килограмм продукта, в желеобразных десертах – не более шести грамм на килограмм продукта. Часто используется как добавка в начинку для кондитерских и хлебобулочных изделий.

Вред или польза?

Многие среди пищевых добавок, как и любое вещество при превышении допустимой дозы, способны нанести ущерб человеческому здоровью. И этот факт не требует доказательств. Воздействие разнообразных добавок на человека обусловлено индивидуальными особенностями, количеством используемого вещества. Исследования, которые проводятся в сфере влияния антиоксиданта на человеческий организм, еще не завершены.

Популярные статьи Читать больше статей

02.12.2013

Все мы много ходим в течение дня. Даже если у нас малоподвижный образ жизни, мы все равно ходим – ведь у нас н...

605131 65 Подробнее

10.10.2013

Пятьдесят лет для представительниц прекрасного пола – это своеобразный рубеж, перешагнув который каждая вторая...

444583 117 Подробнее

02.12.2013

В наше время бег уже не вызывает массу восторженных отзывов, как это было лет тридцать назад. Тогда общество б...

354689 41 Подробнее

Ежегодно вырабатывается около 3 миллионов тонн адипиновой кислоты. Около 10% применяется в пищевой промышленности в Канаде, странах ЕС, в США и во многих странах СНГ.

Продукты богатые адипиновой кислотой:

Соки из концентратов

Фруктовое желе промышленного производства

Жвачки

Общая характеристика адипиновой кислоты

Адипиновая кислота, или как еще ее называют, гександиовая, - пищевая добавка Е 355, выполняющая роль стабилизатора (регулятора кислотности), подкислителя и разрыхлителя.

Адипиновая кислота имеет вид бесцветных кристаллов, обладающих кислым вкусом. Производится она химическим способом при взаимодействии циклогексана с азотной кислотой или азотом.

В настоящее время ведется детальное изучение всех свойств адипиновой кислоты. Установлено, что данное вещество – малотоксичное. На основании этого кислоту относят к третьему классу безопасности. Согласно Государственному Стандарту (от 12.01. 2005) адипиновая кислота обладает минимальным вредоносным воздействием на человека.

Известно, что адипиновая кислота положительно влияет на вкусовые качества готовой продукции. Оказывает влияние на физико-химические свойства теста, улучшает внешний вид готового изделия, его структуру.

Используется в пищевой промышленности:

  • для улучшения вкусовых качеств и физико-химических показателей готовой продукции;
  • для более длительного хранения продуктов, для защиты их от порчи, является антиоксидантом.

Кроме пищевой промышленности, адипиновая кислота применяется и в легкой промышленности. Ее используют для производства различных искусственных волокон, например, полиуретановых.

Производители нередко используют ее в бытовой химии. Эфиры адипиновой кислоты входят в состав косметики для ухода за кожей. Также адипиновая кислота применяется в качестве компонента для средств, предназначенных для удаления накипи и отложений в бытовом оборудовании.

Суточная потребность человека в адипиновой кислоте:

Адипиновая кислота в организме не вырабатывается, при этом она также не является необходимой составляющей для его функционирования. Предельно допустимая ежедневная дозировка кислоты – 5 мг на 1 кг веса. Максимально разрешенная дозировка кислоты в воде и напитках составляет не более 2 мг на 1 литр.

Потребность в адипиновой кислоте возрастает:

Адипиновая кислота не является для организма жизненно необходимым веществом. Применяется лишь для улучшения пищевых качеств и срока годности готовой продукции.

Потребность в адипиновой кислоте снижается:

Усвоение адипиновой кислоты

На сегодня влияние вещества на организм полностью не изучено. Считается, что употреблять в ограниченном количестве эту пищевую добавку можно.

Кислота полностью не усваивается организмом: небольшая часть этого вещества в нем расщепляется. Адипиновая кислота выводится из организма с мочой и с выдыхаемым воздухом.

Полезные свойства адипиновой кислоты и ее влияние на организм:

Полезных свойств для организма человека пока не обнаружено. Адипиновая кислота оказывает положительное влияние только на сохранение продуктов питания, их вкусовые характеристики.

Факторы, влияющие на содержание адипиновой кислоты в организме

Адипиновая кислота попадает в наш организм вместе с продуктами питания, а также при использовании некоторых средств бытовой химии. На содержание кислоты также влияет сфера деятельности. Высокая концентрация вещества, попадая в дыхательные пути, способна раздражать слизистые оболочки.

Большое количество адипиновой кислоты может попасть в организм при производстве полиуретановых волокон.

Чтобы избежать негативных последствий для здоровья рекомендуется соблюдать на предприятии все необходимые меры предосторожности, придерживаться санитарных норм. Предельно допустимое значение содержания вещества в воздухе – 4 мг на 1 м 3 .

Признаки избытка адипиновой кислоты

Признаков нехватки адипиновой кислоты не обнаружено.

АЛЬДЕГИДЫ И КЕТОНЫ

Альдегиды и кетоны представляют собой соединения, функциональной группой которых является карбонильная группа. В альдегидах карбонильная группа связана с углеводородным остатком и атомом водорода, а в кетонах – с двумя углеводородными остатками.

альдегиды

В зависимости от строения углеводородных остатков альдегиды и кетоны подразделяют на насыщенные, ненасыщенные и ароматические. В ароматических альдегидах и кетонах карбонильный атом углерода связан непосредственно с ароматическим кольцом.

Первые члены гомологического ряда насыщенных альдегидов имеют тривиальные названия:

СН3 СН2 СН2 СН2 СН=О валериановый альдегид и т.д.

Для альдегидов других типов и для некоторых кетонов также используются тривиальные названия, например:

CH2 =CHCH=O

акролеин (акриловый альдегид)

CH3 CH=CHCH=O

кротоновый альдегид

коричный альдегид

бензальдегид

CH3 C

C CH2 CH3

www.mitht.ru/e-library

ацетон ацетофенон пропиофенон бензофенон

1. Способы получения

1.1. Окисление алкенов

1.1.1. Озонолиз алкенов

При озонировании алкенов и последующем разложении озонида водой образуются карбонильные соединения. В зависимости от строения алкена образуется либо одно карбонильное соединение (если алкен симметричный), либо смесь двух карбонильных соединений. При получении этим способом альдегидов гидролиз озонида проводят в присутствии цинка, который предотвращает возможное окисление альдегида образующейся при гидролизе перекисью водорода. Для получения, например, бензальдегида можно подвергнуть озонолизу стильбен (1,2-дифенилэтен).

стильбен

2-Бутанон можно получить при озонолизе 3,4-диметил-3- гексена.

1. O3

CH3 CH2

C=CCH2 CH3

2 CH3 CH2

2. H2 O

1.1.2. Окисление алкенов в присутствии хлорида палладия

www.mitht.ru/e-library

В промышленности простейшие альдегиды и кетоны получают окисление алкенов кислородом в присутствии дихлорида палладия в качестве катализатора. Так, при окислении этилена получают уксусный альдегид, а при окислении пропена – ацетон:

CH2 =CH2 CH3 CH=O

PdCl2

CH3 CH=CH2 CH3 CCH3

PdCl2 O

1.2. Гидратация алкинов

При гидратации по Кучерову ацетилена образуется уксусный альдегид, в то время как гидратация других алкинов приводит к кетонам, причем только в случае алкинов с концевой тройной связью и симметричных диалкилацетиленов образуется один продукт, а при гидратации несимметричных диалкилацетиленов – смесь двух продуктов. Проиллюстрируем это на трех примерах:

CHCH CH2 =CHOHCH3 CH=O

HgSO4 , H2 SO4

CH3 C

C=CH2

CCH3

HgSO4 , H2 SO4

CH3 C=CHCH2 CH3

CH3 CCH2 CH2 CH3

CH3 C

CCH2 CH3

CH3 CH=CCH2 CH3

CH3 CH2

CCH2 CH3

www.mitht.ru/e-library

1.3. Получение ароматических альдегидов и кетонов ацилированием аренов

Ароматические кетоны получают ацилированием аренов по Фриделю-Крафтсу. Ацилирующими реагентами могут быть как хлорангидриды карбоновых кислот, так и ангидриды карбоновых кислот, но и в том, и в другом случае используется электрофильный катализатор – трихлорид алюминия, поскольку реакция протекает как электрофильное замещение.

AlCl3

AlCl3

Бензальдегид, как и другие ароматические альдегиды нельзя получить таким образом, поскольку галогеноангидридов и ангидрида муравьиной кислоты не существует. Поэтому для синтеза ароматических альдегидов арены формилируют (т.е. вводят в качестве ацила формильную группу) с помощью других реагентов: либо по Гаттерману – Коху действием смеси монооксида углерода и хлороводорода в присутствии трихлорида алюминия, либо по Гаттерману действием смеси циановодорода и хлороводорода в присутствии трихлорида алюминия.

H HCN, HCl

AlCl3

AlCl3

1.4. Гидролиз геминальных дигалогенидов

Альдегиды и кетоны можно получать гидролизом геминальных дигалогенопроизводных. Образующиеся при гидролизе геминальные диолы представляют собой крайне неустойчивые соединения, которые превращаются в соответствующее карбонильное соединение с отщеплением молекулы воды.

www.mitht.ru/e-library

Используя этот способ получения, можно превратить толуол в бензальдегид следующим образом:

CH 3 2Cl

CHCl2

1.5. Окисление и дегидрирование спиртов до альдегидов и кетонов

При окислении или дегидрировнии первичных спиртов образуются альдегиды, из вторичных спиртов – кетоны (см. Химические свойства спиртов).

В качестве примеров приведем получение бензальдегида дегидрированием бензилового спирта и получение ацетона окислением дихроматом калия в серной кислоте изопропилового спирта.

CH2 OHCu, t

CHCH3

K2 Cr2 O7

CH3 CCH3

H2 SO4

1.6. Получение альдегидов и кетонов из карбоновых кислот и их производных

1.6.1. Восстановление ацилгалогенидов до альдегидов

Альдегиды получают гидрированием галогенангидридов карбоновых кислот на частично дезактивированном («отравленном») палладии (реакция Розенмунда).

1.6.2. Пиролиз кальциевых солей карбоновых кислот

www.mitht.ru/e-library

При нагревании кальциевых солей карбоновых кислот образуются кетоны симметричного строения.

CaCO3

Если пиролизу подвергнуть смешанную кальциевую соль двух различных карбоновых кислот, то продуктом реакции окажется несимметричный кетон. Например, смешанная кальциевая соль уксусной и фенилуксусной кислот при пиролизе превращается в бензилметилкетон, а из соли муравьиной и бензойной кислот можно получить бензальдегид.

CH2 CO

OCCH3

CH2 C CH3

CaCO3

O Ca 2

O Ca 2

Этим методом удобно получать циклические кетоны с размером цикла от 5 до 7 атомов углерода пиролизом кальциевых солей соответствующих дикарбоновых кислот. Например, циклопентанон образуется из адипината кальция:

адипинат кальция

1.6.3. Синтез кетонов из нитрилов карбоновых кислот реакцией Гриньяра

www.mitht.ru/e-library

В нитрилах карбоновых кислот атом углерода цианогруппы является электрофильным центром, к которому могут присоединяться нуклеофильные реактивы Гриньяра. Продукт этого присоединения при гидролизе превращается в так называемый имин, который далее гидролизуется до кетона.

R C=NMgX H 2 O

H 2 O R C=O

NH 3

Так, например, ацетофенон (метилфенилкетон) можно получить взаимодействием ацетонитрила (нитрила уксусной кислоты) и фенилмагнийбромида с последующим гидролизом.

CH C=NMgBr 2H 2 O

Возможен и другой вариант синтеза ацетофенона реакцией Гриньяра: из бензонитрила (нитрила бензойной кислоты) и метилмагнийиодида.

2. Химические свойства

Химическое поведение альдегидов и кетонов обусловлено наличием очень полярной карбонильной группы (дипольный момент связи С=О около 2,5 D).

R + _

R" C O

Относительно большой частичный положительный заряд на атоме углерода придает альдегидам и кетонам электрофильные свойства, поэтому основной тип реакций этого класса соединений –

нуклеофильное присоединение (Ad N ) по карбонильной группе.

2.1. Кислотно-основные свойства и кето-енольная таутомерия

www.mitht.ru/e-library

Альдегиды и кетоны, имеющие в α-положении к карбонильной группе хотя бы один атом водорода, проявляют заметныекислотные свойства (рКа ~20), поскольку сопряженное основание стабилизировано р-π-сопряжением.

граничные структуры сопряженного основания

Для таких альдегидов и кетонов возможна кето-енольная таутомерия. Кето-енольная таутомерия – это явление, связанное с существованием вдинамическом равновесии двух (или более) структурных изомеров, отличающихся расположением атома водорода – или у атома углерода в α-положении, или у атома кислорода

– и распределением π-электронной плотности – или между атомами углерода и кислорода карбонильной группы, или между карбонильным атомом углерода и α-атомом углерода. Это явление легко понять, если представить себе процесс протонирования сопряженного основания: а именно, протон может присоединиться как к атому углерода, от которого он был оторван основанием В, так и к атому кислорода, на котором во второй граничной структуре сопряженного основания локализован отрицательный заряд.

альдегид или кетон

Положение кето-енольного равновесия зависит от строения карбонильного соединения. Для обычных альдегидов и кетонов оно сильно сдвинуто в сторону значительно более термодинамически устойчивой карбонильной формы. Так, в обычных условиях в кетоенольном равновесии для такого кетона, как ацетон, содержится всего лишь 2,4∙10-4 % енола.

CH 3 C O CH2 =C OH

CH3 CH3

www.mitht.ru/e-library

При возможности стабилизации енольной формы ее содержание в равновесии может быть и значительно больше. Ацетоуксусный эфир (этиловый эфир 3-оксобутановой кислоты) в обычных условиях представляет собой смесь кетонной и енольной форм, в которой представлено около 7% последней. По сравнению с ацетоном это почти в 30000 раз больше, что объясняется термодинамической стабилизацией енольной формы в результате образования обширной системы р-π-π-сопряжения и внутримолекулярной водородной связи.

CH 3C CH 2C OC 2H 5 CH 3C CH C OC 2H 5

O H O

Если в α-положении к карбонильной группе атомы водорода отсутствуют, то такой альдегид или кетон заметных кислотных свойств не проявляет, и, разумеется, кето-енольная таутомерия для такого альдегида или кетона невозможна. Например, формальдегид или бензальдегид не имеют в α-положении к карбонильной группе атомов водорода (в формальдегиде вообще нет α- положения), поэтому кислотность этих соединений чрезвычайно мала, и кето-енольной таутомерии для них нет.

Основность альдегидов и кетонов обусловлена относительной доступностью неподеленной пары электронов атома кислорода карбонильной группы.

Основность альдегидов и кетонов невысока, однако она играет заметную роль в реакциях нуклеофильного присоединения, поскольку в протонированной форме электрофильность атома углерода значительно выше. Поэтому реакции нуклеофильного присоединения могут катализироваться кислотами.

2.2. Реакции нуклеофильного присоединения

www.mitht.ru/e-library

Взаимодействие альдегидов и кетонов с нуклеофильными агентами осуществляется по следующему общему механизму:

R C=O+Z HR C Z HR C Z

Нуклеофил Z–Н (очень часто при нуклеофильном центре имеется атом водорода) присоединяется к электрофильному атому углерода карбонильной группы за счет неподеленной пары электронов нуклеофильного центра, образуя аддукт (продукт присоединения), в котором на бывшем карбонильном кислороде находится отрицательный заряд, а бывший нуклеофильный центр заряжается положительно. Этотбиполярный ион стабилизируется переносом протона от положительно заряженного атома Z к отрицательно заряженному атому кислорода. Образовавшийся при этом продукт часто претерпевает дальнейшие превращения, например, отщепление воды.

В качестве нуклеофилов, реагирующих с альдегидами и кетонами, могут выступать различные соединения, в которых нуклеофильные центры находятся на атомах кислорода (О-нуклеофилы), серы (S-нуклеофилы), азота (N-нуклеофилы), углерода (С- нуклеофилы) и других атомах.

Реакционная способность альдегидов и кетонов в реакциях нуклеофильного присоединения зависит от электрофильности кар-

бонильной группы: чем больше частичный положительный заряд на атоме углерода, тем легче происходит присоединение нук-

леофила . Поскольку в молекулах альдегидов при карбонильном атоме углерода содержится только один углеводородный остаток, проявляющий электронодонорные свойства, а в молекулах кетонов таких остатков два, то естественно предположить, что в общем случаеальдегиды более реакционноспособны в реакциях нуклеофильного присоединения, чем кетоны . Электроноакцептор-

ные заместители, особенно вблизи карбонильной группы, увеличивают электрофильность карбонильного углерода и, следовательно, повышают реакционную способность. Определенное значение имеет и стерический фактор: поскольку при присоединении атом углерода карбонильной группы изменяет гибридизацию (sp2 → sp3 ), то чем объемнее заместители при карбонильном атоме углерода, тем большие пространственные затруднения возникают при этом переходе. Например, в ряду: формальдегид, уксусный альдегид,



Рассказать друзьям