Частичка энергии. Энергия β-частицы

💖 Нравится? Поделись с друзьями ссылкой

Технология 3D постепенно набирает обороты и становится всё популярнее. Современное развитие бытовой техники позволяет смотреть объёмное стереокино не только в кинотеатрах, но и дома. Не у каждого есть возможность купить специальный телевизор или монитор с поддержкой 3Д. В данной статье рассмотрим способ совместить 3D-фильм с обычным монитором.

Современные технологии и способы реализации 3D фильмов

Сейчас на рынке присутствуют различные возможности реализации стереоскопического кино на экранах кинотеатров, мониторов и телевизоров.

  • Анаглиф
  • Поляризационный
  • Интерференционный
  • Безочковый

Каждый из способов реализации 3Д имеет преимущества и недостатки. но каждый из них основан на принципе, что каждый глаз видит собственную картинку, а мозг совмещает 2 изображения, получая в итоге трёхмерное объёмное.


Как изображение разделяется в 3Д и сводится в одно объёмное

Способов разделения изображения несколько. Это реализуется при помощи монитора, очков, программного обеспечения. Монитор должен быть с поддержкой 3Д изображения (при этом не все 3Д форматы видео подходят).

Как вывести 3Д изображение на обычном мониторе

В нашем случае, мы хотим вывести объёмную картинку с обычного монитора без поддержки 3Д. Это возможно при помощи анаглифа и соответствующих очков. Технология подразумевает использование очков с двумя цветными фильтрами — красного и синего. А монитор выводит 2 изображения — с синими оттенками и с красными (цвета могут быть и другими, но синий и красный фильтр наиболее распространены). Каждый глаз через фильтр анаглифических очков увидит своё изображение. Анаглифические очки стоят недорого, к тому же, их можно изготовить самостоятельно.

Подготавливаем обычный фильм для просмотра в 3Д формате

Сейчас в сети можно легко найти практически любой современный фильм в формате 3Д. Однако, если Ваш исходный материал в 2Д, фильм можно подготовить самостоятельно для просмотра в 3Д-объёме. Для этого понадобится одна из соответствующих программ (есть бесплатные и платные версии).

Эта программа позволяет переделать обычный фильм в формат 3Д. Пользователь имеет возможность настраивать формат и параметры итоговой картинки. Доступен вариант подготовки видеоматериала для очков с парой зелёно-пурпурного фильтра, а не сине-красного.

Это плеер для подготовки видеофайла «на лету», то есть нет необходимости предварительно пережимать фильм из 2Д в 3Д. Программа позволяет настраивать различные виды фильтрации изображения. Отмечу, что программы не предъявляют особых повышенных требований к мощности компьютера. В результате получаем приблизительно такую картинку (если смотреть 3Д на обычном мониторе без анаглифических очков).

Эта программа для воспроизведения нашего фильма в 3D-формате на обычном мониторе.

Другие способы смотреть 3Д на обычном мониторе

Технология анаглифического 3Д является наиболее доступной по цене и простой в реализации. Кроме неё, дома возможен просмотр фильмов в 3Д по светозатворной технологии. Для этого понадобятся специальные очки и модуль синхронизации изображения на мониторе и очков. Затворные очки — дорогое удовольствие, сравнимое по цене с новым монитором выского класса. Кроме того, для подобной технологии нужен монитор с большой частотой дискретизации (100Гц и более).

Другие способы формирования 3Д изображения на обычном мониторе сложны, требуют больших затрат и рассматривать их в качестве подходящего удобного бюджетного варианта не имеет смысла.

Как Вам? -

В этой статье я постараюсь вкратце рассказать Вам о том, как просматривать 3D фильмы (мультфильмы) на абсолютно любых цветных телевизорах (мониторах).

Для начала немного теории (материал из википедии):

Ана́глиф (от греч. anáglyphos — рельефный) — метод получения стереоэффекта для стереопары обычных изображений при помощи цветового кодирования изображений, предназначенных для левого и правого глаза. Для получения эффекта необходимо использовать специальные (анаглифи́ческие) очки, в которых вместо диоптрийных стёкол вставлены специальные светофильтры, как правило, для левого глаза — красный, для правого — голубой или синий. Стереоизображение представляет собой комбинацию изображений стереопары, в которой в красном канале изображена картина для левого глаза (правый её не видит из-за светофильтра), a в синем (или синем и зелёном — для голубого светофильтра) — для правого. То есть каждый глаз воспринимает изображение, окрашенное в противоположный цвет.

Как же применить эту технологию в домашних условиях? Очень просто! Для начала нам необходимо обзавестись анаглифическими очками. В своем городе купить их я не смог, поэтому, задавшись целью, начал искать интернет магазин, продающий такие очки. Посетив множество интернет сайтов, мое внимание привлек интернет-магазин , с хорошим выбором и приемлемыми ценами. Заказал 4шт, оплатил с помощью Qiwi терминала и через неделю получил их по почте (доставка всего 160 рублей).

Итак, очки уже у нас есть, теперь речь пойдет о 3D контенте. Как просматривать анаморфные стереопары в анаглифических очках или конвертировать анаморф в анаглиф я расскажу в другой статье, а сейчас я опишу на что нужно обращать внимание при скачивании/покупке 3D видео.

Первое и немаловажное - это разрешение 3D видео. Если Вы планируете смотреть анаглиф 3D видео на телевизоре с помощью DVD проигрывателя, то разрешение такого видео не должно превышать по горизонтали 720 точек, а по вертикали 576, т.е. не более 720х576 для (PAL) и 720х480 для (NTSC). Для всеядных DVD-проигрывателей кодек видео не важен, будь он DivX или Xvid (главное, чтобы он не был H.264, т.к. его почти все DVD не поддерживают), для стареньких проигрывателей кодек должен быть строго MPEG2.

Если же Вы планируете смотреть анаглиф 3D видео с помощью компьютера, медиапроигрывателя или любого другого устройства, поддерживающего высококачественное видео форматов HD 1280х720 и Full HD 1920х1080 - нужно обращать внимание на разрешение монитора или телевизора на котором будете смотреть. Чем выше разрешение видео, тем соответственно четче изображение на экране, сильнее погружение в 3D. Для монитора компьютера и просмотра на телевизорах не поддерживающих формат Full HD я рекомендую скачивать 3D видео 720р, т.е. с разрешением не превышающем 1280х720. Такого разрешения вполне хватит для отличной картинки на небольшом мониторе или телевизоре. Если же у вас большой монитор (более 21") или телевизор поддерживающий Full HD формат - то выбор очевиден, качаем видео только с разрешением 1920х1080 пикселей, иначе на огромном экране будут видны все недочеты (артефакты, как их еще называют) видео малого разрешения.

С разрешением видео определились, теперь смотрим, чтобы контент был обязательно с пометкой: "Формат 3D : Anaglyph / Анаглиф red"cyan ". На лицензионных DVD дисках нарисованы анаглифические очки, на торрент раздачах стоит вышеупомянутая пометка.

Далее не стоит забывать о том, воспроизводит ли Ваше устройство использованный в 3D видео звук. Многие новейшие телевизоры, имеющие USB вход для носителей информации не поддерживают звук в формате DTS 5.1. Если же в раздаче указан формат mp3 или AC3 5.1 - смело качайте, такой формат звука поддерживается почти всеми медиаустройствами.

С чего начать просмотр 3D видео? Конечно же с культового фильма Аватар. его можно скачать в приличном качестве 1024х576, вполне подходящему для просмотра на дисплее монитора (ноутбука) или на телевизоре не поддерживающем формат HD. Если же у Вас телевизор или монитор с поддержкой Full HD, то Вам сюда . На обоих раздачах MKV файлы в кодеке H.264 и звуке AC3 5.1, объемом 2.16Гб и 16.5Гб соответственно. Версии для DVD проигрывателя я к сожалению не нашел, но при желании можно конвертировать Full HD исходник в понятный для DVD проигрывателя формат.

Ну и под конец статьи хочу Вас предостеречь материалом из той же википедии:

Адаптация наблюдателя к специфическим условиям восприятия происходит достаточно быстро. Однако после не столь долгого (около 15 мин) пребывания в анаглифических очках у наблюдателя на продолжительное (порядка получаса) время снижается цветовая чувствительность и возникает ощущение дискомфорта от восприятия обычного (не красно-голубого) мира.

Думаю, что это не так важно. Ведь главное - это возможность просмотра 3D фильмов на своем телевизоре (мониторе) без лишних затрат! Спасибо за внимание и приятного просмотра в 3D!

Cтраница 1


Максимальная энергия частиц в генераторе Ван-де - Граафа, как и во всяком ускорителе прямого действия, ограничена напряжением пробоя между шаром и окружающими предметами. Даже при самых тщательных предосторожностях в существующих установках напряжение пробоя не удается поднимать выше десяти миллионов вольт.  

Вычислим максимальную энергию частицы. Коэффициент V2 при амплитудном значении EQ поля получается потому, что вычисляется среднее значение поля за полупериод колебаний.  

Вычислим максимальную энергию частицы. Коэффициент 1 / 2 при амплитудном значении Е0 поля получается потому, что вычисляется среднее значение поля за полупериод колебаний.  

Вычислим максимальную энергию частицы.  

Величину W, равную максимальной энергии частиц при Г0 К, называют нepгeтичecким уровнем Ферми или просто уровнем Ферми.  

Потери энергии космическими лучами ограничивают максимальную энергию частиц, составляющих космические лучи; это ограничение зависит от возраста частицы. В период 1969 - 1971 гг. ракетные опыты давали в 20 - 100 раз завышенную полную плотность реликтового излучения.  

Тритий - это чистый (3-излучатель с максимальной энергией частиц 18 61 0 02 кэВ и периодом полураспада 12 43 года.  

Магнитное воле в циклотроне достигает десятков тысяч эрстед, радиус камеры - несколько метров, максимальная энергия частиц - до 107 эв. Эта энергия сравнительно невелика, хотя в первых экспериментах по рас щеплению ядер считалась достаточной. Большая энергия на циклотроне не может быть достигнута: как следует из теории относительности, увеличивается со скоростью масса частиц, из-за чего во время движения уменьшается частота их обращения.  

Специфичность действия излучения трития определяется величиной пробега его 3-частиц. Максимальная энергия частиц в р-спектре трития соответствует пробегу в веществе около 6 мкм, при плотности вещества 1 г / см3, причем 90 % энергии излучения расходуется на расстоянии около 0 5 мкм от источника. Последнее обстоятельство оказывается исключительно важным, так как поглощение излучения трития происходит на расстоянии порядка размеров живой клетки, в отличие от таких р-излучателей, как фосфор-32 или иттрий-90, излучение которых поглощается облучаемым органом. В этой связи важно учитывать и внутриклеточную локализацию трития, потому что радиочувствительность субклеточных единиц сильно различается.  


Колеман [ 31, 851 применил одиночный резонатор, в котором с помощью двух магнетронов через независимые отверстия связи возбуждаются колебания вида ТМ010 с частотой 2 8 Гщ. При общей входной мощности 800 кет максимальная энергия частиц составляет 1 5 Мэв, Для инжектирования электронов в ускоряющий резонатор с требуемой скоростью и нужным сдвигом фаз, что обеспечит высокую энергию на выходе, применяется резонатор для предварительного группирования. Последовательные электроды соединены с делителем на сопротивлениях, так что их потенциалы распределены по параболическому закону.  

С точки зрения генерации новых частиц особенно эффективны ускорители со встречными пучками (VI.5.4.3, VI.5.3.4), в которых сталкиваются частицы с нулевым суммарным импульсом. Благодаря этому вся их кинетическая энергия может быть преобразована в энергию покоя рождающихся частиц, суммарный импульс которых также равен нулю. Это уже совсем близко к максимальной энергии частиц космического излучения.  

Бета-частицы, вылетающие из атомных ядер со всевозможными начальными энергиями (от нулевой и до некоторой максимальной), обладают различными пробегами в веществе. Проникающую способность бета-частиц различных радиоактивных изотопов обычно характеризуют минимальной толщиной слоя вещества, полиостью поглощающего все бета-частицы. Например, от потока бета-частиц с максимальной энергией частиц, равной 2 МэВ, полиостью защищает слой глюмииия толщиной 3 5 мм. Альфа-частицы, обладающие значительно большей массой, чем бета-частицы, при столкновениях с электронами атомных оболочек испытывают очень небольшие отклонения от первоначального направления движения и движутся почти прямолинейно.  

В последние годы ряд важных открытий в ядерной физике был сделан благодаря широкому применению метода толстослойных пластинок (стр. Практика показала, что этот метод совмещает в себе чрезвычайную простоту и большую точность исследования. Фотопластинки, поднимаемые на шарах-зондах и ракетах в верхние слои атмосферы, позволяют изучать ядерные превращения, вызываемые частицами космических лучей с энергиями, в тысячи раз превышающими максимальную энергию частиц, ускоренных в лабораторных условиях. Вместе с тем фотопластинки пригодны также и для регистрации частиц небольшой энергии.  

Законы сохранения строго выполнялись во всех случаях, описанных в предыдущих главах. Когда один из законов оказывался несовершенным, приходилось интерпретировать его по-другому. Так, старый закон сохранения массы был расширен и превращен в более общий закон сохранения энергии. С другой стороны, когда ожидаемые события в действительности не происходили, придумали новый закон сохранения (как было в случае закона сохранения барионного числа). Однако не всегда легко доказать, что законы сохранения выполняются точно. Особенно загадочная ситуация возникла на заре развития ядерной физики при изучении кинетической энергии частиц, испускаемых радиоактивными веществами.

Энергию?-частицы можно определить, измеряя массы исходного радиоактивного ядра, ?-частицы и конечного ядра. Суммарная масса?-частицы и конечного ядра должна быть немного меньше массы исходного ядра, а энергетический эквивалент недостающей массы равняться кинетической энергии?-частицы. Измерять с высокой точностью массы различных ядер и других частиц физики смогли только в 20-х годах нашего столетия. Тем не менее, некоторые важные выводы относительно энергий частиц они сделали, не зная точного значения масс.

Рассмотрим торий-232, который распадается на?-частицу (гелий-4) и радий-228. Все ядра тория-232 имеют одинаковые массы. Массы всех ядер радия-228 также имеют одинаковую величину, как и массы всех?-частиц. Не зная величину этих масс, все же можно сказать, что каждый раз, когда атом тория-232 испускает?-частицу, дефицит массы должен быть одинаков, а следовательно, должна быть одинакова и кинетическая энергия?-частиц. Другими словами, торий-232 должен испускать?-частицы с одной и той же энергией.

Как же определить кинетическую энергию?-частиц? Известно, что чем больше энергия?-частицы, тем глубже она проникает в вещество. ?-Частицы тормозятся очень тонким слоем твердого вещества, но могут пройти сквозь слой воздуха толщиной в несколько сантиметров. При этом?-частицы непрерывно передают энергию молекулам воздуха, с которыми они сталкиваются, постепенно замедляются и, захватывая электроны, становятся в конце концов обычными атомами гелия. В таком состоянии их уже нельзя обнаружить методами, с помощью которых регистрируются?-частицы, так что фактически они исчезают.

Обнаружить?-частицы можно при помощи пленки химического соединения, называемого сернистым цинком. Каждый раз, когда?-частица налетает на такую пленку, она вызывает слабую вспышку света. Если рядом с источником?-частиц (скажем, кусочком тория-232 в свинцовом контейнере с очень узким отверстием) поместить сцинтилляционный счетчик, то число вспышек будет соответствовать количеству образующихся?-частиц. Если сцинтилляционный счетчик располагать все дальше и дальше от источника, ?-частицы должны будут проходить через все больший и больший слой воздуха, чтобы попасть в него. Если бы?-частицы испускались с различными энергиями, то обладающие наименьшей энергией исчезли бы очень быстро, более «энергичные» ?-частицы прошли бы больший путь в воздухе и т. д. В результате по мере удаления сцинтилляционного счетчика от источника число?-частиц, попадающих в счетчик, должно было бы постепенно уменьшаться. Если бы?-частицы вылетали с одинаковой энергией, все они проходили бы в воздухе одинаковый путь. Следовательно, сцинтилляционный счетчик должен был бы регистрировать одно и то же число частиц по мере удаления от источника, вплоть до некоторой критической точки, за которой он не зарегистрировал бы ни одной вспышки.

Именно это явление наблюдал английский физик Уильям Генри Брэгг в 1904 году. Почти все?-частицы, вылетающие из ядер одного и того же элемента, имели одну и ту же энергию и обладали одинаковой проникающей способностью. Все?-частицы тория-232 проходили слой воздуха толщиной 2,8 см, все?-частицы радия-226- 3,3 см, а?-частицы полония-212 - 8,6 см . На самом деле имеются некоторые отклонения. В 1929 году было обнаружено, что небольшая часть частиц одного и того же радиоактивного ядра может обладать необычайно большой кинетической энергией и большей проникающей способностью, чем остальные. Причина этого в том, что исходное радиоактивное ядро может находиться в одном из возбужденных состояний. В возбужденных состояниях ядра имеют большую энергию, чем в своем нормальном основном состоянии. Когда ядро испускает?-частицу, находясь в возбужденном состоянии, ?-частица получает дополнительную энергию. В результате помимо основной группы?-частиц образуются маленькие группы?-частиц с большей проникающей способностью, по одной группе для каждого возбужденного состояния.

Когда радиоактивное ядро образуется при распаде другого ядра, оно иногда находится в возбужденном состоянии с момента своего образования. Тогда большая часть испускаемых им?-частиц имеет необыкновенно большую энергию, а?-частицы с меньшей энергией образуют небольшие группы. Эти отдельные группы?-частиц (от 2 до 13) с различными энергиями образуют спектр ?-частиц данного ядра. Каждая компонента спектра соответствует, как и предполагали, одному из возбужденных состояний ядра. Итак, закон сохранения энергии?-частиц выполняется, чего нельзя сказать в случае?-частиц.

Энергия?-частицы

Если все выводы, сделанные для?-частиц, были бы применимы к?-частицам и выполнялись бы рассмотренные энергетические соотношения, все образующиеся при распаде ядер?-частицы обладали бы одной и той же кинетической энергией. Однако еще в 1900 году создалось впечатление, что?-частицы испускаются с любой энергией вплоть до некоторого максимального значения. В течение последующих пятнадцати лет доказательства постепенно накапливались, пока не стало совершенно ясно, что энергии?-частиц образуют непрерывный спектр.

Каждое ядро, испуская в процессе распада?-частицу, теряет определенное количество массы. Уменьшение массы должно соответствовать величине кинетической энергии?-частицы. При этом кинетическая энергия?-частицы любого из известных нам радиоактивных ядер не превышает энергии, эквивалентной уменьшению массы. Таким образом, уменьшение массы при любом радиоактивном распаде соответствует максимальному значению кинетической энергии?-частиц, образующихся в процессе этого распада.

Но, согласно закону сохранения энергии, ни одна из?-частиц не должна обладать кинетической энергией меньше энергии, эквивалентной уменьшению массы, т. е. максимальная кинетическая энергия?-частицы должна быть одновременно и минимальной. В действительности это не так. Очень часто?-частицы испускаются с меньшей кинетической энергией, чем следует ожидать, причем максимального значения, соответствующего закону

сохранения энергии, вряд ли достигает хоть одна?-частица. Одни?-частицы обладают кинетической энергией, несколько меньшей максимального значения, другие - значительно меньшей, остальные - намного меньшей. Наиболее распространенная величина кинетической энергии равна одной трети максимального значения. В общем, более половины энергии, которая должна возникать вследствие уменьшения массы при радиоактивных распадах, сопровождающихся образованием?-частиц, нельзя обнаружить.

В двадцатых годах многие физики были склонны уже отказаться от закона сохранения энергии, по крайней мере для тех процессов, в которых образуются?-частицы. Перспектива была тревожной, так как закон оставался справедлив во всех других случаях. Но существует ли другое объяснение этого явления?

В 1931 году Вольфганг Паули предложил следующую гипотезу: ?-частица не получает всю энергию из-за того, что образуется вторая частица, которая уносит остаток энергии. Энергия может распределиться между двумя частицами в любых пропорциях. В некоторых случаях почти вся энергия передается электрону, и тогда он имеет почти максимальную кинетическую энергию, эквивалентную уменьшению массы.

Иногда почти вся энергия передается второй частице, тогда энергия электрона фактически равна нулю. Когда энергия распределяется между двумя частицами более равномерно, электрон имеет промежуточные значения кинетической энергии.

Какая же частица удовлетворяет предположению Паули? Вспомним, что?-частицы возникают всякий раз, когда внутри ядра нейтрон превращается в протон. При рассмотрении превращения нейтрона в протон, несомненно, проще иметь дело со свободным нейтроном. Нейтрон не был открыт, когда Паули впервые предложил свою теорию. Мы же можем воспользоваться преимуществом ретроспективного взгляда.

При распаде свободного нейтрона на протон и электрон, последний вылетает с любой кинетической энергией вплоть до максимальной, которая приблизительно равна 0,78 Мэв . Ситуация аналогична испусканию радиоактивным ядром?-частицы, поэтому при рассмотрении распада свободного нейтрона необходимо учесть частицу Паули.

Обозначим частицу Паули х и попробуем выяснить ее свойства. Запишем реакцию распада нейтрона:

п > р + + е - + х.

Если при распаде нейтрона выполняется закон сохранения электрического заряда, х -частица должна быть нейтральной. Действительно, 0=1–1+0. При распаде нейтрона на протон и электрон потеря массы составляет 0,00029 единиц по атомной шкале масс, что приблизительно равно половине массы электрона. Если бы x -частица получила даже всю энергию, образующуюся в результате исчезновения массы, и если бы вся энергия пошла на образование массы, масса х составляла бы только половину массы электрона. Следовательно, x -частица должна быть легче электрона. На самом деле она должна быть значительно легче, так как обычно электрон получает большую часть выделяющейся энергии, а иногда почти всю. Более того, вряд ли энергия, переданная х -частице, полностью превращается в массу; значительная часть ее переходит в кинетическую энергию х -частицы. С годами оценка массы х -частиц становилась все меньше и меньше. Наконец, стало ясно, что х -частица, как и фотон, не имеет массы, т. е. подобно фотону она распространяется со скоростью света с момента своего возникновения. Если энергия фотона зависит от длины волны, энергия х -частицы зависит от чего-то аналогичного.

Следовательно, частица Паули не имеет ни массы, ни заряда, и становится понятным, почему она остается «невидимкой». Заряженные частицы обычно обнаруживают благодаря ионам, которые они образуют. Незаряженный нейтрон был обнаружен из-за большой массы. Частица без массы и без заряда ставит физика в тупик и лишает его какой бы то ни было возможности поймать и изучить ее.

Вскоре после того, как Паули предположил существование х -частицы, она получила имя. Сначала её хотели назвать «нейтроном», так как она не заряжена, но через год после появления гипотезы Паули Чедвик открыл тяжелую незаряженную частицу, которая получила это имя. Итальянский физик Энрико Ферми, имея в виду, что х -частица намного легче нейтрона Чедвика, предложил назвать х-частицу нейтрино, что по-русски значит «нечто маленькое, нейтральное». Предложение было очень удачным, и с тех пор она так и называется. Обычно нейтрино обозначают греческой буквой? «ню») и распад нейтрона записывают следующим образом:

п > р + + е - + ?..

Нейтрино совершенно необходимо

Гипотеза Паули о существовании нейтрино и последовавшая затем детальная теория рождения нейтрино, созданная Ферми, были по-разному встречены физиками. Никто не желал отказываться от закона сохранения энергии, хотя имелись серьезные сомнения относительно необходимости спасения этого закона с помощью частицы без массы и без заряда, частицы, которую нельзя обнаружить, частицы, единственным основанием для существования которой было просто желание спасти закон сохранения энергии. Некоторые физики считали ее призрачной частицей, своего рода трюком для спасения энергетической «бухгалтерии». Фактически концепция нейтрино была просто способом выражения того, что «закон сохранения энергии не выполняется» . Закон сохранения энергии оказался не единственным, спасенным нейтрино.

Рассмотрим неподвижный нейтрон, т. е. нейтрон с нулевым импульсом относительно наблюдателя. При его распаде суммарный импульс протона и электрона должен равняться нулю, если распад сопровождается образованием только двух частиц. Электрон должен вылететь в одном направлении, а протон точно в противоположном (но с меньшей скоростью, так как его масса больше).

Однако это не так. Электрон и протон испускаются в направлениях, которые образуют определенный угол. Небольшой суммарный импульс в направлении вылета частиц возникает как бы из ничего, и закон сохранения импульса нарушается. Однако, если при этом возникает нейтрино, оно может вылететь в таком направлении, что в точности скомпенсирует суммарный импульс двух других частиц (рис. 6).

Другими словами, закон сохранения импульса выполняется только благодаря нейтрино.

Рис. 6. Распад нейтрона.


Легко видеть, что аналогично обстоит дело и с моментом количества движения. Нейтрон, протон и электрон имеют спин +1/2 или -1/2 каждый. Предположим, что спин нейтрона +1/2. При его распаде суммарный спин протона и электрона должен быть равен +1/2, если закон сохранения момента количества движения справедлив и при распаде образуются только эти две частицы. Возможно ли это? Спины протона и электрона могут быть равны +1/2 и +1/2; +1/2 и -1/2; -1/2 и -1/2, т. е. суммарный спин обеих частиц равен +1, 0 и - 1 соответственно. Он не равен и никогда не может быть равен +1/2 или -1/2, если вначале спин нейтрона был равен -1/2. Короче говоря, если нейтрон распадается только на протон и электрон, закон сохранения момента количества движения нарушается.

Но предположим, что при распаде возникает нейтрино со спином +1/2 или -1/2. Тогда суммарный спин трех возникших при распаде частиц всегда будет равен спину исходного нейтрона. Следовательно, существование нейтрино «спасает», по крайней мере, три закона: закон сохранения энергии, импульса и момента количества движения. Примечательно, что одна и та же частица выполняет тройную работу.

Трудно сказать, что было хуже: признать существование одной загадочной, призрачной частицы или нарушение одного закона сохранения. Значительно легче сделать выбор между призрачной частицей и нарушением сразу трех законов сохранения. Пришлось физикам выбрать призрачную частицу. Постепенно существование нейтрино было признано ядерщиками. Они перестали сомневаться в реальности нейтрино независимо от того, могли его обнаружить или нет.

Сохранение лептонного числа

Нейтрино не только спасает три закона сохранения, но и создает один новый. Чтобы понять, как это происходит, рассмотрим нейтрино применительно к античастицам.

Антинейтрон распадается на антипротон и позитрон (антиэлектрон). Ситуация аналогична распаду нейтрона. Позитрон вылетает с меньшей кинетической энергией, чем должен, позитрон и антипротон не разлетаются во взаимно противоположных направлениях и их спины не складываются надлежащим образом. Добавление нейтрино и в этом случае все сбалансирует.

Возникает, естественно, вопрос: одно и то же ли нейтрино образуется при распаде антинейтрона и при распаде нейтрона?

Нетрудно доказать, что нейтрино бывают разными. Нейтрино, обладающее спином, подобно нейтрону, создает магнитное поле, которое имеет два различных направления. Следовательно, нейтрино и антинейтрино существуют точно так же, как нейтрон и антинейтрон. При распаде нейтрона возникает один из близнецов нейтрино, а при распаде антинейтрона - другой. Но какой из них сопровождает данный распад?

Я уже описал закон сохранения барионного числа, который утверждает, что суммарное барионное число замкнутой системы остается постоянным. Имеется ли аналогичный закон сохранения лептонного числа, по которому суммарное лептонное число замкнутой системы, остается неизменным? Почему нам не потребовать от лептонов того же, что и от барионов? К сожалению, если нейтрино не включить в рассмотрение, то этого сделать нельзя.

Припишем электрону лептонное число +1, а позитрону или антиэлектрону - лептонное число -1. Фотон, являющийся своей собственной античастицей, не может иметь лептонное число ни +1, ни -1, и было бы логично приписать ему нулевое лептонное число. Все барионы также имеют нулевые лептонные числа.

Вернемся снова к распаду нейтрона. Начнем с одного нейтрона, имеющего барионное число 1 и нулевое лептонное число. Предположим, что при распаде нейтрона образуется только протон и электрон. Протон и электрон должны иметь суммарное барионное число 1 и суммарное лептонное число 0, если оба эти числа сохраняются. Действительно, сумма барионных чисел двух частиц равна +1 (т. е. 1 + 0) в соответствии с законом сохранения барионного числа. Суммарное лептонное число протона и электрона тоже равно +1 (т. е. 1 + 0), хотя в начале и реакции лептонное число равнялось нулю. Следовательно, лептонное число не сохраняется.

Предположим, что к лептонам принадлежат нейтрино и антинейтрино с лептонными числами + 1 и -1 соответственно. Тогда при распаде нейтрона на протон, электрон и антинейтрино лептонное число сохраняется (0 + 1–1 = = 0), и распад можно записать следующим образом:

п > р + + е - + "?,

где "? - антинейтрино.

Когда распадается антинейтрон с нулевым лептонным числом, возникают антипротон, позитрон и нейтрино. Лептонные числа трех образовавшихся частиц 0, -1 и +1 соответственно, а их сумма равна нулю:

"п > "р - + "е + + ?.

В свободном состоянии нейтроны и антинейтроны распадаются на протоны и антипротоны, обратная ситуация не имеет места. Однако внутри ядер протоны иногда спонтанно превращаются в нейтроны (например, в случае фосфора-30). Аналогично в антивеществе антипротоны превращаются в антинейтроны.

Когда протон превращается в нейтрон, образуются позитрон и нейтрино:

р + > n +"e + + ? .

Когда же антипротон превращается в антинейтрон, образуются электрон и антинейтрино:

"р - >"n + е - + ? .

В обоих случаях лептонное число сохраняется. Суммируя, можно сказать, что при испускании электрона должно возникать антинейтрино, а при испускании позитрона должно возникать нейтрино, чтобы в конце распада лептонное число равнялось нулю.

Если принимать во внимание нейтрино и антинейтрино, лептонное число сохраняется во всех изученных субатомных процессах. Таким образом, существование нейтрино и антинейтрино не только спасло законы сохранения энергии, импульса и момента количества движения, но и позволило также установить закон сохранения лептонного числа. Поэтому физикам было очень трудно не признать существование этих частиц.

Примечания:

Чем больше проникающая способность?-частиц данного ядра, тем больше дефицит массы в процессе радиоактивного распада и тем больше вероятность этого распада, т. е. чем больше проникающая способность?-частиц, тем меньше период полураспада ядра. Если торий-232 имеет период полураспада 14 миллиардов лет, период полураспада радия-226 - 1620 лет, а полония-212 - три десятимиллионных доли секунды.

В самом деле, если бы я поддался искушению ввести понятие о нейтрино в самом начале книги, было бы трудно доказать, что нейтрино - не плод научного мистицизма. Однако, поскольку первая половина книги подчеркивает значение и важность законов сохранения, сейчас можно показать, что нейтрино, несмотря на все его странные свойства - реальная и совершенно необходимая частица.



Рассказать друзьям