Искусственный интеллект: ближайшее будущее. Искусственный интеллект - угроза или помощник для человечества? Машина-ребенок, эволюция и непрерывное совершенствование

💖 Нравится? Поделись с друзьями ссылкой

В 1832 году коллежский асессор Семен Николаевич Корсаков, пионер российской кибернетики, создал «гомеоскоп» - классифицирующее логическое устройство, которое автоматизировало процесс сравнения идей и понятий. С тех пор системы искусственного интеллекта ушли далеко вперед. О прошлом, настоящем и будущем таких систем рассказал кандидат физико-математических наук, ученый секретарь Курчатовского комплекса НБИКС-технологий НИЦ «Курчатовский институт» Вячеслав Демин в лекции, состоявшейся в образовательном центре «Сириус». «Лента.ру» публикует выдержки из его выступления.

Мозг и компьютер

На данном этапе все усилия по созданию искусственного интеллекта направлены на то, чтобы снять часть нагрузки с человеческого интеллекта, создать помощника для обработки плохо структурированной информации.

Самая очевидная задача - работа с большими объемами информации. Это направление так и называется: «Большие данные» (Big data). Самый яркий пример - Большой адронный коллайдер. БАК генерирует несколько петабайт (1 Пб = 1 000 000 Гб) информации в секунду. Она поступает в различные информационные центры по всему миру, где обрабатывается компьютерами, после чего передается физикам для анализа.

Но работа с большими объемами информации выявила слабое место современных компьютеров. Сейчас в вычислительной технике используется так называемая архитектура фон Неймана: память и процессор физически разделены и общаются друг с другом посредством шины, которая находится между ними. Чтобы выполнить команду, процессор посылает запрос в память, та извлекает из определенной ячейки данные, отправляет их в процессор, затем из памяти запрашивается команда для выполнения и вновь загружается в процессор, и так далее.

Постоянно идет передача данных в обоих направлениях, и узкое горлышко шины ограничивает производительность общего процесса вычислений. Конечно, сегодня эту проблему отчасти снимают многоядерные процессоры, когда информация делится между разными ядрами, обрабатывается в них одновременно, а потом результаты сливаются в каком-то одном ядре.

Человеческий мозг устроен иначе: его архитектура принципиально параллельна, а не последовательна. Память и вычисления в мозге реализуются в одних и тех же структурах - в нейронах. Каждая нервная клетка похожа на крохотный процессор, выполняющий простейшую функцию. Совокупность же большого числа таких элементарных процессоров способна производить довольно сложную обработку нечетко структурированной информации. Если такую схему удастся воплотить и в компьютерах, скопировав принцип действия работы нейронов, это станет прорывом.

У каждой нервной клетки есть отростки - аксоны, по которым передается информация, и дендриты, принимающие информацию. Соединение аксона и дендрита называется синапс. Когда происходит генерация «спайка», то есть собственного электрохимического возбуждения клетки, с помощью нейромедиаторов ток идет от одного нейрона к другому. Синапс при этом пластичен, он может менять эффективность передачи сигнала, варьируя степень выделения при передаче и/или чувствительности приема нейромедиатора.

Кадр: фильм «Я, робот»

Считается, что память формируется за счет пластичности синапсов: некоторый набор синаптических проницаемостей определяет какое-то определенное воспоминание, которое воспроизводится при распространении сигнала через этот набор синапсов. Если ученые смогут создать систему искусственного интеллекта, в которой аппаратно будет использоваться тот же принцип, то есть обработка и хранение информации в одних и тех же функциональных элементах (искусственных нейронах-процессорах с пластичными соединениям между ними), это выведет технологии на новый уровень. Достаточно серьезные и успешные попытки есть, но работы еще очень много.

Распознавание и осмысление

Уже сейчас компьютерные системы неплохо справляются с распознаванием образов и звуков. Но искусственный интеллект по-прежнему не осмысляет данные, любое изображение так и остается для него набором непонятных черточек. Тем не менее компьютер может и номера превышающих скорость автомобилей разобрать, и речь в печатный текст превратить, и понравившуюся песню узнать.

Не осмысляет машина и происходящее на биржах, но, основываясь на накопленных финансовых данных, она научилась довольно точно предсказывать, что произойдет в следующий момент на рынках, и автоматически отдает команду покупать либо продавать акции. Так работает современный «быстрый трейдинг». Прогнозирование (например, погоды или ситуации на дороге) - еще одно направление, успешно реализуемое уже сегодня.

Все эти задачи под антропоморфные алгоритмы решения относятся к так называемым некорректным задачам, когда известны не все данные для их однозначного решения, а значит, и решить такую задачу можно лишь примерно: чем больше существует ее параметров (условий), тем больше вариантов решения. При этом если задача не может быть решена в одно действие, то есть состоит из последовательности шагов, и на каждом шаге есть несколько вариантов допустимых действий, то количество комбинаций, приводящих в итоге к решению задачи, очень быстро растет в зависимости от количества шагов (или «размерностей» задачи). Это называется «проклятием размерностей».

Более того, в реальности на каждом шаге мы видим фактически бесконечное число вариантов допустимых действий (до стакана на столе можно дотянуться бесконечным числом вариантов), а следовательно и общее количество способов решения проблемы бесконечно. Держать все возможные варианты в голове человек просто не может, потому мозг и мыслит только целями и концепциями, решая некорректные задачи лишь приблизительно оптимально и побеждая тем самым «проклятие размерностей».

Фото: Long Hongtao / Xinhua / Zumapress / Globallookpress.com

Это умение и позволяет нам существовать в реальном мире. Человеческий интеллект так может, искусственный - пока очень условно, лишь для ограниченного набора технических задач. При этом обычно под каждую техническую некорректную задачу строится свой алгоритм решения (например, специальная архитектура искусственной нейронной сети), что разительно отличает современный искусственный интеллект от мозга, способного решать все типы предлагаемых ему задач.

Адаптивность

Не может искусственный интеллект пока продемонстрировать и высокую степень адаптивности. Большинству существующих систем не поможет даже полный объем информации о резко меняющихся условиях, чтобы на них среагировать. Выбить стул из-под робота проще простого, даже если он увидит ваше движение. Выбить стул из-под человека, который хоть краем глаза успеет заметить, что что-то происходит, сложнее.

В последнее время в этой области появились успехи: созданы роботы-носильщики (например Big Dog агентства DARPA), способные удерживать равновесие в ответ на толчки и подножки. В то же время это опять специфическая система, разработанная под конкретную задачу и не обладающая универсальностью в адаптации к другим условиям и тем более - в решении других задач.

Но не только ради создания систем искусственного интеллекта следует изучать мозг. Еще одна важная цель находится в области медицины. Примерно 130 миллионов человек в мире страдают от различных болезней мозга. Среди них и всемирно известный физик Стивен Хокинг - у него боковой амиотрофический склероз, он прикован к инвалидному креслу. По каким-то причинам у него в мозге не работают моторные нейроны, которые генерируют сигнал к мышцам, но при этом все остальные участки коры функционируют прекрасно. Все признают, что Хокинг - гений. 67 миллионов человек страдают от болезни Альцгеймера, но полная картина возникновения этого заболевания неясна. Современная наука знает о мозге так много - и в то же время так мало!

Еще одно направление, ради которого необходимо изучать мозг, - это создание интерфейсов «мозг-компьютер». Такая система позволит управлять роботом или любым другим устройством (протез, система «умный дом», смартфон, программа и тому подобное) в буквальном смысле силой мысли, передавая команды с лобных долей коры на компьютер или специальный чип, контролирующий необходимое устройство.

Перспективна и такая область исследований, как создание нейроаниматов, то есть робототехнических устройств, управляемых живыми культурами нервных клеток в пробирке. Суть состоит в том, что на дне лабораторного сосуда, в так называемой чашке Петри, располагаются электроды, на которые высаживаются живые нервные клетки и добавляются необходимые питательные вещества. Вскоре там образуется и начинает расти живая нейронная сеть. Ее можно пытаться обучать с помощью электродов управлению необходимым устройством (аниматом).

Я называю это запасным вариантом создания искусственного интеллекта. Если не удастся его сделать из неживой материи, то можно попробовать вырастить управляемые биологические сети. Отмечу, что в Курчатовском комплексе НБИКС-технологий НИЦ «Курчатовский институт» реализуются все перечисленные мною направления.

Умная машина

Существует два базовых подхода к разработке искусственного интеллекта. Первый - так называемый нисходящий, или символьный подход подразумевает создание баз знаний, экспертных систем и систем логического вывода. Предполагается, что система сможет имитировать мышление, рассуждение, речь, эмоции, даже творчество. Это путь наиболее проработанный, но соответствующие программы до сих пор весьма далеки от человеческого мышления.

Второй подход - восходящий - предполагает, что искусственные нейронные сети смогут моделировать архитектуру, свойства и поведение своего биологического прообраза, что приведет к созданию интеллектуального нейрокомпьютера. Если апологеты первого направления в большинстве своем разочаровались в создании мыслящей программы, то сторонники второго подхода поделились на два примерно равновеликих лагеря. Одни считают, что сильный искусственный интеллект возможен, другие - что нет.

Первые считают, что искусственный интеллект сможет когда-либо самостоятельно мыслить, обладать сознанием и осознавать себя, вторые уверены, что не сможет. Я отношусь к первым, так как никто еще не доказал обратного и даже не построил достаточно полной модели мозга с учетом хотя бы минимального набора наиболее важных его подсистем. Однако мыслящий искусственный интеллект если и возможен, то является очень далекой перспективой.

Фото: Chip Somodevilla / Getty Images

В Европе есть проект «Мозг человека» (Human Brain Project). На суперкомпьютере пытаются моделировать мозг. Создали детализированную модель одного миллиона нервных клеток неокортекса. На симуляцию одной секунды деятельности этой сети суперкомпьютер тратит от нескольких часов до суток, в зависимости от степени детализации модели.

Как определить момент, когда будет создан полноценный искусственный интеллект? Есть много вариантов ответа на этот вопрос, которые условно делятся на две большие группы. Например, Алан Тьюринг, знаменитый британский математик, известный в том числе благодаря взлому кода легендарной шифровальной установки фашистов «Энигма», считал, что машина станет разумной тогда, когда сможет общаться с человеком, а тот не поймет, что собеседник - не человек.

Второй подход чаще всего пропагандируют писатели-фантасты: когда машина научится чувствовать и творить. Правда, пока еще не выдвинуты однозначные критерии проверки указанных действий. Кто прав - покажет время. А пока требуются дальнейшие захватывающие исследования, которые дадут ответы на глубочайшие вопросы относительно нашего с вами самоопределения в этом мире - тайны разума.

Искусственным интеллектом принято называть раздел информатики, который занимается изучением возможностей обеспечения разумных действий и рассуждений при помощи вычислительных систем и других искусственных устройств. В большинстве случаев, при этом, заранее известен алгоритм решения задач.

Необходимо отметить, что в научных кругах не существует точного определения данной науки, потому как решения вопроса о статусе и природе человеческого мозга также не существует. Точно также отсутствует и точный критерий достижения вычислительными машинами «разумности», несмотря на то, что на первых этапах развития искусственного интеллекта использовались определенные гипотезы, в частности, тест Тьюринга (цель – определить, умеет ли машина мыслить).

Данная наука имеет тесные взаимосвязи с психологией, трансгуманизмом, нейрофизиологией. Подобно всем компьютерным наукам, она пользуется математическим аппаратом. Искусственный интеллект является довольно молодой областью исследований, начало которой было положено в 1956 году. В данный момент времени развитие этой науки находится в состоянии так называемого спада, когда достигнутые ране результаты применяются в различных областях науки, промышленности, в бизнесе и повседневной жизни.

В настоящее время существует четыре основных подхода к изучению построения систем искусственного интеллекта: логистический, структурный, эволюционный и имитационный. Логистический подход в своей основе содержит так называемую Булеву алгебру, хорошо знакомую программистам. Большинство систем искусственного интеллекта, построенных по логистическому принципу, представляют собой определенную машину доказательства теорем: исходная информация содержится в виде аксиом, а логические выводы формулируются по правилам отношений между этими аксиомами. В каждой такой машине есть блок генерирования цели, причем система вывода доказывает эту цель как теорему. Эта система больше известна под названием экспертной системы.

Структурный подход в качестве основы системы искусственного интеллекта использует моделирование структуры мозга человека. Среди первых подобных попыток необходимо отметить перцептрон Розенблатта. Основная структурная моделируемая единица – нейрон. Со временем возникли новые модели, которые в настоящее время известны, как нейронные сети.

В случае использования эволюционного подхода при построении систем искусственного интеллекта, основная часть внимания уделяется, как правило, построению начальной модели, а также тем правилам, по которым эта модель может эволюционировать. Классическим примером эволюционного алгоритма является генетический алгоритм.

Имитационный подход в основном используется в кибернетике. Одно из базовых понятий данного подхода – это объект, поведение которого имитируется, то есть, так называемый «черный ящик». Таким образом, моделируется способность человека копировать действия других, не вдаваясь в подробности, зачем это нужно (что экономит массу времени, особенно в самом начале жизни человека).

В современном мире развитие искусственного интеллекта происходит весьма бурно. Многие ученые делают самые разнообразные и невероятные прогнозы относительно того, как будет развиваться эта наука в ближайшем будущем, однако большинство из них уверены в том, что все новые открытия будут основаны на существующих на данный момент разработках. Среди основных технологий, которые будут определять жизнь человека в будущем, необходимо, в частности, отметить:
— нанотехнологии (качественный переход на новый уровень технологий);
дальнейшее развитие искусственного интеллекта (которое в скором будущем вполне возможно сможет опередить своих создателей по умственным возможностям);
— развитие глобальных, в первую очередь, сетевых коммуникаций (в частности, так называемая «коммуникационная кожа», то есть глобальная информационная сеть, которую планируют создать к 2025 году, и которая будет обладать способностями чувствовать все, что угодно);
— роботизация (роботы будут заниматься выполнением сложных задач, в том числе строительством домов);
— генная инженерия (человеческая цивилизация начнет массово покорять вселенную, массово летать в космос).

Какими бы ни были прогнозы на будущее, уже сейчас существуют некоторые проекты, на которые необходимо обратить внимание. Речь, в частности, идет о проекте по созданию искусственного мозга под названием «Голубой мозг». Разработкой проекта занимаются ученые-исследователи, представители Федеральной политехнической школы (Лозанна). Они сумели создать модель-схему расположения синапсов в головном мозге крыс. Как заявил директор проекта Генри Макрам, результаты оказались выше всяческих ожиданий. Вполне возможно, что исследователи в скором времени смогут ответить на многие вопросы, которые до настоящего времени беспокоили умы ученых: придет ли на смену человеческому разуму искусственный и будет ли он более высокоразвитым? Является ли человек замыкающим звеном в цепочке эволюции планеты?

Для тех, кто не слышал о данном проекте, вкратце напомним: проект «Голубой мозг» является широкомасштабной и весьма смелой исследовательской программой, которая стартовала еще в 2005 году. Основная цель проекта заключалась в создании модели структуры и функционирования мозговой активности различных животных с целью дальнейшего моделирования человеческого неокортекса. Перед исследователями стояло непростое задание: разработать новые подходы в процессе исследований патологий головного мозга. Новаторство исследования заключалось в том, что ученые попытались интегрировать все научные достижения в области нейробиологии, дополнить их своими эмпирическими данными, и на основе всех этих данных смоделировать мозговую активность при помощи Blue Gene – сверхмощного компьютера.

Миллионы нервных клеток, которые заключены в человеческом мозге, для передачи импульсов соединяются между собой. Таким образом, перерабатывается информация, поступающая в мозг. Такая связь между нейронами называется синаптической. Однако ученые не могли определить, как на практике материальные предметы преобразуются в мысли. До недавнего времени существовала теория о существовании химических связей между нервными клетками, однако результаты проекта «Голубой мозг» свидетельствуют о том, что связи между нейронами, в большинстве своем, создаются случайно. По мнению одного из исследователей, нейроны существуют независимо друг от друга и вступают во взаимодействие лишь после столкновения. Более того, большинство синаптических связей, смоделированных виртуально, предсказывают расположение таких же связей, но в живом мозге. Таким образом, можно говорить о том, что виртуальная модель очень близка к реальности.

Несмотря на столь значимые результаты, нашлось немало ученых, которые подвергли критике проект. По их мнению, полученные результаты могут свидетельствовать только о структуре синапсов, но не об их функциональности. Дело в том, что в виртуальной модели содержится ограниченное количество нервных клеток, что не может отразить всю многогранность нейронов в человеческом мозге. Таким образом, все полученные результаты могут помочь проанализировать деятельность головного мозга на локальном уровне, но не в масштабах всей его работы.

В 2013 году в Лозанне планируется к запуску еще один аналогичный проект — Human Brain Project. В его рамках к 2023 году ученые из 13 стран собираются создать самый крупный в мире компьютерный мозг, в котором будет работать столько же нейронов, сколько и в человеческом мозге – сто миллиардов. На первый взгляд может показаться, что подобную задачу решить невозможно, однако исследователи преследуют благие цели – изучение болезней головного мозга с целью дальнейшей разработки необходимых лекарственных препаратов. По мнению директора проекта профессора Маркрама, создание компьютерной модели мозга просто необходимо, ведь благодаря этому можно унифицировать ход исследований и проводить эксперименты, совершенствуя и исправляя ее.

Еще одним проектом, который стартовал в 2010 году, является проект компании DARPA совместно с SRI International. Суть его заключается в разработках прорывного искусственного интеллекта, который будет способен обрабатывать и передавать данные, копируя механизмы работы человеческого мозга. Электронная адаптивная нейроморфная масштабируемая система SyNAPSE, по замыслу разработчиков, должна превзойти традиционные алгоритмы обработки данных и будет способна автономно заниматься изучением сложной среды.

На данный момент военные пользуются искусственным интеллектом для обработки большого количества информации, в частности, данных разведки и видео. Вся эта информация должна быть быстро расшифрована и проанализирована. Для новой системы это не составит большого труда. Она будет использовать математическую логику, будет заниматься решением простых теорем на основе данных сенсоров, принимать решения и выполнять необходимые действия.

Более того, Пентагон намерен использовать данную модель искусственного интеллекта в качестве виртуального личного помощника, который сможет реагировать на голосовую команду и выполнять функции секретаря. Напомним, ранее DARPA совместно с SRI International уже занимались разработками персонального помощника под названием CALO. Проект был завершен в 2009 году. Программа способна рассуждать, понимать инструкции, узнавать, объяснять свои действия, адекватно реагировать на неизвестную ситуацию и обсуждать проведение операции после ее завершения. Данная программа берет необходимые данные из контактов пользователя, его электронной почты, проектов и задач. Затем создается реляционная модель окружения пользователя, происходит обучение. В итоге Искусственный интеллект может вести переговоры и урегулировать конфликты от имени пользователя. К сожалению, данная программа работает только на персональном компьютере, не будучи интегрированной в робота.

В 2011 году в Японии был разработан первый прототип искусственного мозга. Искусственный интеллект может обрабатывать огромное количество информации, однако роботы еще не наделены способностью мыслить. Разработчики пока с этим не спешат…

По мнению исследователей, роботы ближайшего будущего во многом будут похожи на людей: они смогут ходить на двух ногах, смогут различать лица, поддерживать беседу, выполняют просьбы, однако по своей сути – это всего лишь машины, подобные человеку. Все их действия подчинены заранее подготовленному алгоритму, а потому – примитивны. И только в том случае, если удастся реализовать технологию бимолекулярного вычисления, машины смогут мыслить и получат способность к творчеству. По словам разработчиков, новый механизм обработки информации очень напоминает работу человеческого мозга. В голове человека находятся миллионы нейронов, которые вступают в постоянное взаимодействие друг с другом. Суть новой технологии заключается в том, что каждая молекула может иметь до трех сотен направлений взаимосвязей. Таким образом, благодаря новой технологии машины смогут решать те задачи, которые в данный момент недоступны для них. По словам исследователей, новые разработки предполагается применить в области диагностики и лечения онкологических болезней: программируемые молекулярные системы будут вводиться в раковые клетки и трансформировать их в здоровые.

Искусственный интеллект (ИИ) - тема, которая уже давно не сходит со страниц научно-популярных журналов и постоянно затрагивается в кино и книгах. Чем больше специалисты развивают эту область науки, тем большими мифами она покрывается.

Развитие и будущее искусственного интеллекта волнует и тех, кто стоит у руля государства. Не так давно президент РФ Владимир Путин посетил офис Яндекса в день 20-летия компании, где ему объяснили, когда ИИ превзойдет человеческий интеллект.

Все, кто хоть немного проникает в суть потенциала искусственного интеллекта, понимают, что оставлять без внимания эту тему нельзя. Это не только важная тема для обсуждения, но и, наверное, одна из самых значимых в контексте будущего.

Словом, заметные успехи есть и у нас в стране.

Чем быстрее развиваются технологии искусственного интеллекта, тем сильнее людей захватывает опасение - как быстро они останутся без работы. Все действительно так плохо?

И да, и нет. Человечество уже несколько раз сталкивалось с возникновением технологий, революционно изменивших всю производственную сферу.

Так было с паровым двигателем в эпоху промышленной революции практически уничтожившим многие профессии (в основном, связанные с примитивным физическим трудом), так было с электронными вычислительными машинами, которые заменили человека в задачах, основанных на поточных математических расчётах.

В XV-XVIII вв.еках, когда в Англии «овцы съели людей», социальные последствия были действительно катастрофическими. Англия потеряла по разным оценкам от 7 до 30% своего населения. Властная элита того времени была всерьёз озабочена тем, куда девать лишних людей. Джонатан Свифт откликнулся на эти искания юмористическим памфлетом, в котором предлагал употреблять детей бедняков в пищу.

Однако в наши дни мы видим, что на смену вымершим профессиям пришли новые, и население Земли куда больше, чем в XVIII веке. В XX веке последствия автоматизации были уже не столь катастрофичны с социальной точки зрения. Однако недооценивать опасность всё-таки не стоит.

«Через 30 лет роботы смогут делать практически всё, что умеют делать люди, - такой прогноз дал Моше Варди (Moshe Vardi), профессор вычислительной инженерии и директор Института информационных технологий Кена Кеннеди (Ken Kennedy Institute for Information Technology) при Университете Райса (William Marsh Rice University). Это приведёт к тому, что более 50% жителей Земли станут безработными».

Роботы забирают работы

На днях председатель комитета Госдумы по информационной политике, информационных технологиям и связи Леонид Левин заявил, что для России является важной проблема вытеснения рабочей силы искусственным интеллектом.

Рано или поздно людей заменят автоматизированной системой, и на рынок выплеснется 2% работоспособного населения страны. Именно поэтому о том, как их трудоустроить, тех, кто потеряет работу вследствие развития цифровых технологий, нужно думать уже сейчас сказал Левин.

По мнению председателя, уже в скором будущем мы столкнемся с ростом безработицы. Но действительно ли роботы «отберут» наши рабочие места и стоит ли беспокоиться по этому поводу рассказал «Ридусу» специалист по машинному обучению Сергей Марков.

Сергей, даже сейчас уже есть «мертвые профессии», которые не требуют человеческого труда, хотя, казалось бы, лет 10 назад никто и не думал, что, например, кондуктора скоро станут ненужными. А какие еще профессии вытеснят технологии?

Мы приближаемся к тому времени, когда машины превзойдут людей почти в любом деле. Я считаю, что обществу нужно посмотреть в лицо этой проблеме до того, как она встанет во весь рост. Если машины будут способны делать почти всё, что умеют люди, что тем останется делать? сказал Моше Варди, профессор вычислительной инженерии и директор Института информационных технологий Кена Кеннеди при Университете Райса.

Долгое время на пути автоматизации стояли технологические ограничения - машины не могли распознавать образы и речь, не могли говорить, не могли достаточно хорошо понимать смысл высказываний на естественном языке, не имели достаточно данных для того, чтобы научиться многим привычным для человека вещам.

Благодаря последним достижениям в сфере искусственного интеллекта многие из этих ограничений фактически оказались сняты. Кроме того, многие профессии сами претерпели трансформацию, что сделало их более удобными для автоматизации.

Например, современный офисный клерк ведёт переписку не в бумажном, а в электронном виде, бухгалтер выполняет проводки не на бумаге, а в бухгалтерской программе, оператор станка управляет станком зачастую не при помощи рукоятей, а при помощи управляющей программы. Поэтому сейчас задача автоматизации во многих профессиях перестала быть научной и стала чисто инженерной.

Правда пока что производственная сфера, связанная с ИИ, скорее создаёт рабочие места - нужны специалисты в области машинного обучения и подготовки данных, сотрудники для разметки обучающих массивов, специалисты по внедрению и т. д. Но в какой-то момент электроовцы определённо начнут есть людей, и о последствиях нужно позаботиться уже сейчас.

При этом важно понимать, что остановить технический прогресс нельзя, и попытка это сделать обернётся куда более катастрофичными последствиями.

Мы сможем когда-нибудь полностью довериться роботам (ИИ), или все-таки в любом деле должен быть человеческий фактор?

У этого вопроса есть несколько аспектов. С одной стороны, люди в прошлом с опаской относились практически к любой технике. Первый лифт, первый автомобиль, первый поезд или самолёт - всё это когда-то было непривычным, и многим казалось опасным. Да во многом опасным и было - техногенные катастрофы унесли немало жизней.

И тем не менее в наши дни все эти вещи стали привычными и уже не вызывают сильного страха. В этом смысле - наши потомки будут относиться к системам ИИ более спокойно. Люди порой склонны мистифицировать вещи, которые им непонятны. Дикарь думает, что в паровозе живёт злой дух, а современный обыватель думает, что наши системы ИИ обладают сознанием, хотя это далеко не так.

С другой стороны, я не думаю, что универсальные системы ИИ когда-либо станут частью нашей производственной сферы. На мой взгляд будущее скорее за синтетическими системами - то есть за объединением человека и машины в единый организм. В этом смысле искусственным интеллектом будущего будет усовершенствованный человеческий интеллект.

Кстати говоря, человеческий интеллект тоже не совсем корректно называть естественным. Ребёнок от рождения не обладает интеллектом, всему его учит общество, родители, окружающая среда. В этом смысле мы с вами все по сути дела «искусственные интеллекты», и наши страхи, связанные с ИИ, во многом являются страхами перед самими собой.

Последнее время многие ученые, например, Стивен Хокинг , Билл Гейтс или тот же Илон Маск , начали паниковать, что ИИ обрекает человечество на гибель, а будущее они видят какой-то антиутопией. Стоит ли воспринимать такие прогнозы всерьез?

Честно говоря, я бы не спешил всерьёз пугаться этих заявлений. Стивен Хокинг, безусловно, не является специалистом в области ИИ, как, в общем-то, и Илон Маск.

На другой чаше весов высказывания таких людей, как например, Эндрю Ын - американский учёный в области информатики, доцент Стэнфордского университета, исследователь робототехники и машинного обучения, ведущий специалист лаборатории искусственного интеллекта китайской корпорации Baidu .

Ын, говоря о проблеме безопасности ИИ, сравнивает её с проблемой перенаселения Марса - конечно, мы когда-нибудь колонизируем Марс, и тогда, возможно, в какой-то момент там возникнет проблема перенаселения. Но стоит ли заниматься ей сегодня?

Марк Цукерберг также довольно скептически отнёсся к заявлениям Маска. «Искусственный интеллект сделает в будущем нашу жизнь лучше, а предсказывать конец света очень безответственно», - заявил он.

Лично я думаю, что высказывания Маска стоит рассматривать в прагматическом ключе - Маск хочет застолбить эту тему и в идеале получить от государства средства для её разработки.

Неужели все так безоблачно и не о чем беспокоиться?

Реальные опасности, связанные с развитием ИИ, лежат, на мой взгляд, совсем в иной плоскости, чем об этом принято думать. Главные риски связаны не с тем, что мы своими создадим «Скайнет», который поработит человечество. Риски от внедрения технологий ИИ и машинного обучения куда более прозаичны.

Доверяя решение важных вопросов тем или иным математическим моделям, мы можем пострадать от ошибок, допущенных при их разработке. Искусственный интеллект, воспроизводящий действия людей-экспертов, унаследует их ошибки и предубеждения. Недоработки в системах управления производством или транспортом могут привести к катастрофам.

Вмешательство злоумышленников в работу жизненно важных систем в условиях тотальной автоматизации может повлечь опасные последствия. Чем сложнее системы, тем больше в них может быть потенциальных уязвимостей, в том числе связанных со спецификой тех или иных алгоритмов искусственного интеллекта.

Безусловно, для управления этими рисками следует создавать законодательную базу, разумные регламенты безопасности, специальные методы для выявления уязвимостей. Одни системы ИИ будут использоваться для контроля других. Возможно, код жизненно важных систем будет обязателен к публикации для независимого аудита. Словом, специалистам в этой сфере предстоит ещё много работы.

Одна из наших ключевых экспертиз – машинное обучение, и мы стараемся отправлять сотрудников на профильные конференции для получения новых знаний (о копенгагенской конференции Scala Days мы уже в блоге), да и просто, чтобы быть в курсе основных трендов.

Для отрасли искусственного интеллекта это особенно важно, так как здесь ландшафт меняется как нигде быстро, а количество источников информации огромно. Целью моей поездки было как раз понять, что из «горячих» тем мы сможем использовать на практике в наших проектах.

Приехал я в Нью-Йорк за день до начала мероприятия и, как оказалось, в самый разгар очередного гей-парада, поэтому все витрины магазинов, фасады зданий и символ города Empire State Building были раскрашены в цвета радужного флага. Отчасти это задало тон поездке. На следующий день, погуляв и проникнувшись духом города, я поехал регистрироваться на конференцию.

О конференции

Конференция оказалась довольно масштабной и включала около 80 выступлений, проходивших параллельно в семь потоков, поэтому очно мне удалось посетить лишь небольшую часть. Для остального пришлось ждать видеоматериалов - O’Reilly всегда их публикует на safarionlinebooks , и там же можно посмотреть видео с предыдущих конференций (правда нужна подписка).

С одной стороны, тематика конференции довольно узка: когда мы говорим «искусственный интеллект», то в 90% случаев подразумеваем глубокие нейронные сети. С другой стороны, докладчики приглашаются из совершенного разных областей, и ввиду разнообразия решаемых ими задач компания спикеров получается довольно разношерстной. На сайте конференции можно ознакомиться с ее агендой .

Говоря о представленных на конференции компаниях, можно выделить три большие группы. Первая – это вездесущие технологические гиганты вроде Google, IBM, Microsoft, Amazon и др. Вторая – молодые компании и смузи-ориентированые AI-ориентированные стартапы, в коих сейчас недостатка нет. И третья – это представители академической среды – основной поставщик новых теорий, подходов и алгоритмов. Лично на меня выступления последних, как правило, производят наибольшее впечатление.

Ввиду короткого формата выступлений (на каждую лекцию вместе с вопросами отводилось всего 45 минут) в них было очень мало математики или алгоритмов, в основном описывались общие идеи и демонстрировались примеры их применения. В целом это понятный подход, если что-то тебя заинтересовало - welcome, гугли эту тему в интернете и изучай её более подробно. Поэтому для себя я сформулировал цель посещения подобных мероприятий так – понять, какие темы на слуху и в каком направлении развивается индустрия.

К слову, за все время конференции ни в одном из выступлений я не услышал так любимый многими термин «Big Data», что, на мой взгляд, говорит о достаточно профессиональном уровне аудитории – терминология должна использоваться корректно.

Вообще, когда мы говорим «искусственный интеллект», воображение чаще всего рисует нечто подобное.

Но на самом деле ИИ - не только и столько про роботов, это гораздо шире. По сути речь идет о любой интеллектуальной системе или программе, способной в условиях большой неопределенности решать задачи, традиционно считавшиеся прерогативой человеческого интеллекта.

О глубоком обучении

Первый день организаторы отвели под мастер-классы. В основном это были туториалы по всевозможным фреймворкам глубокого обучения (deep learning), которых сегодня «на слуху» около 10 штук и которые, на мой личный взгляд, как две капли воды похожи другу на друга.

Глубокое обучение - это процесс обучения многослойных нейронных сетей, оптимизированных для работы с данными сложных иерархических форматов, и в последнее время ставший стандартным подходом для анализа текстов, изображений, аудио/видео данных и временных рядов.

Основное преимущество глубоких сетей перед другими методами машинного обучения и немногослойными сетями (shallow networks) – они избавляют от необходимости заниматься ручной генерацией фич (feature engineering), поскольку этот механизм заложен в архитектуру самой сети. Обратная сторона – такие сети требуют больше данных для обучения и для них сложнее подбирать параметры.

В глубоких сетях выделяют 2 базовых архитектуры: сверточные (CNN, Convolutional Neural Networks) и рекуррентные сети (RNN, Recurrent Neural Networks). Первые используются в основном для работы с изображениями, а вторые - для анализа текстов и любых последовательностей. Все остальные архитектуры - вариации на тему этих двух.

Чтобы аналитики не занимались реализацией низкоуровневой логики, за несколько лет появилось множество API, упрощающих разработку таких сетей и сводящих ее к конфигурации нужной архитектуры. Здесь перечислены почти все:


Я решил не мудрить и выбрал два наиболее популярных: TensorFlow и Keras.

Keras – один из наиболее высокоуровневых инструментов в этой серии, по сути являющийся Lego-конструктором. Разработка приложения сводится к выбору архитектуры сети, числа слоев, нейронов и активационных функций. Простейшие глубокие сети в Керасе собираются в 10 строк кода, что делает этот инструмент идеальным для быстрого старта или прототипирования.

TensorFlow, наоборот, один из наиболее низкоуровневых инструментов. Google его позиционирует как пакет для любых символьных вычислений, не только для глубоких сетей. На мой взгляд, одна из киллер-фич – это обалденная динамическая визуализация. Чтобы понять, о чем идет речь, можно посмотреть, например, .

TensorFlow является основной технологией для огромного числа AI-проектов и помимо Гугла используется в IBM, SAP, Intel и много где еще. Важный его плюс – большой репозиторий готовых к использованию моделей.

Второй и третий дни были отведены под лекции. После утренней обзорной сессии с короткими десятиминутными выступлениями о достижениях индустрии, шел блок из 6 лекций.

Deep Learning в банках

Мне всегда была интересна тематика применения глубоких сетей не для очевидных картинок и текста, а для более «традиционных» структурированных данных, поэтому первой лекцией я выбрал рассказ Эрика Грина из Wells Fargo AI Labs об анализе транзакционных данных в банках.

«Продвинутные» банки давно делают глубокую аналитику для прогнозирования будущих транзакций, сегментации, выявления мошенничества и т.д., но пока мало кто может похвастаться работающим решением на базе глубоких сетей.

Идея предложенного подхода очень простая – сначала история транзакций записывается в неком структурированном формате, после этого каждый атрибут транзакции кодируется определенным числом (word embedding), а затем к получившимся векторам применяются глубокие сети (CNN или RNN). Такой механизм универсален и позволяет решать как задачу классификации, так и задачи прогнозирования и кластеризации транзакций. К сожалению, с точки зрения подачи материала лекция оказалась довольно слабой, и у автора выудить детали по качеству данного решения не удалось.

Зато следующий рассказ о совместном проекте Teradata и датского Danske Bank по внедрению антифрод-решения на базе глубокого обучения получился куда лучше. Задача была повысить качество обнаружения мошеннических транзакций. Ребята описывали довольно интересное решение, связанное с представлением транзакций в виде «псевдокартинки» и последующим применением сверточной нейронной сети.

Ниже приведен пример такой псевдокартинки, где по горизонтали отложены атрибуты транзакции, а по вертикали моменты времени. Кроме того, вокруг каждого атрибута (выделены светло-синим) по часовой стрелке отложены наиболее коррелированные с ним атрибуты. Такое представление позволяет легко находить аномальные паттерны в поведении клиентов.


Если верить их цифрам, по качеству это решение оставило далеко позади даже всеми любимый градиентный бустинг. Я не всегда доверяю цифрам в презентациях, но даже если качество сопоставимо, это очень интересный результат. Я планирую обязательно попробовать данный подход где-нибудь в наших задачах.

Правда на вопрос «Как такое решение будет проходить европейские требования GDPR по интерпретируемости модели» ребята так и не ответили. Будь он задан мне, я бы отослал к такой замечатльной штуке как LIME - интерпретатору сложных нелинейных моделей.

Дальше я пошел на панельную дискуссию с тремя девушками, владельцами AI-ориентированных стартапов. Дискуссия была о том, как выстроить эффективный бизнес в сфере AI. По факту сессия оказалась самой бесполезной: несмотря на обещанный «no fluff» в названии, никаких секретов раскрыто не было, а «общие» вопросы чередовались «общими» ответами. Единственное, что запомнилось из лекции, это выступавшая там девушка с необычным именем Коко (по совместительству профессор MIT).

Что там в Amazon

Далее меня заинтересовала лекция от Amazon про фреймворк распределенного глубокого обучения Apache MXNet . Я рассчитывал на мини-туториал по данному фреймворку, но по факту 90% рассказа были посвящены рекламе сервисов Amazon, а в оставшиеся 10% MxNet была упомянута просто как основная платформа для глубокого обучения, использующаяся во всех сервисах Амазона.

Среди достижений народного хозяйства компании были представлены:

  • голосовой помощник Alexa ,
  • телепомощник Amazon Show - вариант Alexa с камерой и дисплеем,
  • Amazon X-Ray – встроенный в видеоплеер помощник, который по стопкадру может показать биографию актера, а также вывести информацию о сюжете и персонаже,
  • а также Amazon - магазин без кассовых аппаратов (мечта гопника) – просто набираешь продукты в корзину и идешь на выход, магазин сам определяет состав продуктов в корзине и списывает деньги со счета. Магазин сейчас работает в beta-режиме (только для сотрудников).


Во всех перечисленных выше проектах в том или ином виде используется глубокое обучение и, в частности, фреймворк Apache MxNet.

«Железная» логика

Далее выступал представитель Numenta – компании, которая занимается разработкой систем, моделирующих работу Неокортекса (части мозга человека, отвечающей за высокоуровневую интеллектуальную деятельность и обучение). Идея – построить обучающиеся структуры, более близкие по своей архитектуре мозгу человека, чем сегодняшние нейронные сети. В основе лежит теория иерерархической темпоральной памяти (Hierarchical Temporal Memory), которая описывается в книге Джефа Хокинса 2004 года «Об интеллекте». Собственно, он же и основал компанию Numenta.

Сами авторы позиционируют свой проект как исследовательский и, несмотря на то, что алгоритм может решать разные задачи, пока нет результатов, подтверждающих, что подход работает лучше традиционных глубоких нейронных сетей. У выступавшего Мэта Тейлора есть канал на YouTube (HTMSchool), но он мне, честно говоря, не понравился и для ознакомления я бы рекомендовал все-таки печатные материалы.

Тема «железа» (AI acceleration) на конференции поднималась достаточно часто. Многие компании занимаются разработкой высокопроизводительных вычислительных комплексов, оптимизированных специально под обучение нейронных сетей. Известные примеры это процессоры Google TPU (tensor processing units), GPU дата-центры от Nvidia, или созданный в 2014 году компьютер TrueNorth от IBM, своей архитектурой повторяющий модель неокортекса. С ростом объемов данных скорость обучения становится важным конкурентным преимуществом.

Когда роботы захватят людей

Далее был интересный доклад Кэти Джордж из McKinsey о потенциале автоматизируемости профессий. Частично о результатах можно почитать на McKinsey (к сожалению, в виде единой pdf у них не нашел).

Каждую профессию они рассматривали как комбинацию определенных действий и смотрели, какой процент этих действий может быть автоматизирован с учетом текущих технологий. Результаты меня удивили! Несмотря на то, что потенциал для автоматизации есть почти во всех профессиях, полностью автоматизированы могут быть всего 5% позиций. Что немножко расходится с популярной риторикой о том, что через год роботы поработят всех юристов (или как там было...).

Наибольшим потенциалом обладает предсказываемая физическая деятельность – это те же конвейеры на производстве, а также сбор и хранение данных, наименьшим – непредсказуемая физическая активность – например, игра в футбол (впрочем, насчет непредсказуемости болельщики сборной России могут поспорить).

Любопытно, что зависимость автоматизируемости от оплаты труда имеет форму треугольника – высокооплачиваемые профессии мало автоматизируются, а вот среди низкооплачиваемых разброс намного больше.

Интересно, что если смотреть потенциал по разным индустриям, то на первое место авторы поставили горячо любимую в нашей компании задачу персонализированного маркетинга (personalized advertizing).

День второй

Если глубокая аналитика давно перестала быть чисто академической дисциплиной и стала вполне себе прикладной (любой ларек с шаурмой умеет строить модели), то в области искусственного интеллекта дела обстоят чуть по-другому. Область активно развивается, и люди пытаются находить все новые точки применения, среди которых есть и абсолютно бесполезные с практической точки зрения.

Генерация искусства

Даг Эк из Google рассказывал о проекте Google Magenta – открытом репозитории моделей для создания музыки и рисунков.

Затем был рассказ про сеть sketch-RNN, электронного художника, работающего на базе автоэнкодера и умеющего перерисовывать нарисованные от руки картинки и символы.

Автоэнкодер – сеть, сначала переводящая картинку в некое сжатое представление, а затем восстанавливающая его изначальную размерность. Таким образом, сеть работает как высокочастотный фильтр и способна убирать шум с картинки (шум в широком смысле, например, недорисованный ус).


Слева – котэ, нарисованный человеком, а справа - сгенерированный машиной образ.

Понять, где рисует машина, где человек – невозможно. В целом, становится все больше областей, где машины проходят тест Тьюринга (тест Тьюринга не обязательно формулируется для диалоговых систем, это может быть, например, распознавание или генерация картинок).

Авторы сами признаются, что конкретной цели у проекта нет, но это нормально, если вспомнить, что многие выдающиеся изобретения были разработаны безо всякой цели. По крайней мере, для рынка поп-музыки потенциал, мне кажется, очевиден.

Покер и теория игр

Другое известное применение искусственного интеллекта – это соревнование с человеком в азартных (и не очень) играх. Томас Сендхолм из Carnegie-Melon University рассказывал об игре в покер. Все знают, что машина давно обыгрывает человека в шахматы, слышали про недавнюю победу в Go, но выигрыш искусственного интеллекта в покерном турнире в этом году не получил большой огласки.

В теории игр игра с неполной информацией – та, в которой игрок не видит карт соперника. Из-за этого на каждом шаге ему приходится иметь дело не с детерминированным деревом игры, а с вероятностями и их матожиданием. Такие игры сложнее, так как необходимо просчитывать большее количество комбинаций. Решить игру означает найти оптимальную стратегию. Если упрощенные версии покера с помощью брут-форса были решены относительно давно, то более сложный вариант noLimit texas Holdem содержит 10^161 (больше числа атомов во Вселенной) вариантов игры, и прямое решение здесь невозможно.

Для решения использовался мощный суперкомпьютер, в реальном времени обрабатывающий поступающую информацию от игрового стола (Libratus), а в качестве математического алгоритма метод Monte-Carlo Counterfactual Regret Minimization.

Турнир я не видел, но говорят, вопреки ожиданиям AI играл довольно «тайтово», делал большие ставки, «давил банком» и брал «на понт».


Для индустрии азартных игр это означает перспективу роботизации, сравнимую с роботизацией рынка ценных бумаг.

Беспилотные авто

Одна из топовых тем, имеющих отношение к искусственному интеллекту, – это, конечно, беспилотные авто. Она не только популярна, но еще и весьма «широка». Разработчики таких машин вынуждены иметь дело не только с технологиями компьютерного зрения, но еще и с теорией оптимального управления, многочисленными системами позиционирования и решать множество прогностических задач. Не так сложно научить машину распознавать сцену и поворачивать руль в нужном направлении. Гораздо сложнее создать полностью автономного агента, способного безопасно передвигаться в потоке вместе с обычными водителями и координировать с ними свои действия.

Анка Драган из Berkley рассказывала о проблемах поведения беспилотных авто на дорогах. Для «затравки» было приведено два примера.

Первый пример: в штатах тестируемая гугломашина простояла два часа на перекрестке, пропуская другие машины, поскольку не могла вклиниться в поток. Вторым примером было показано видео а-ля телепередача «Водить по-русски», в котором где-то на просторах Миннесоты грузовик не дает перестроиться машине в свой ряд и «отжимает» легковушку обратно.

Сейчас разрабатываемые беспилотники воспринимают другие машины как препятствия, от которых нужно держаться подальше: если робот видит, что машина не уступает дорогу, он не будет к ней соваться. Но такая модель поведения (defensive behavior) будет крайне неэффективной: на перекрестке такие беспилотники могут пропускать другие машины до бесконечности, а на дороге не смогут даже перестроиться на съезд.

С другой стороны, как показывает второй пример, рассчитывать на разумное поведение водителей тоже нельзя. Отсюда и одно из главных опасений – сумеет ли беспилотник правильно повести себя в нестандартных ситуациях. Поэтому авторы предлагают при разработке использовать некий сбалансированный подход – начинать маневр, исследовать реакцию водителя, и в зависимости от нее корректировать свои действия.

Про Doom, или что еще умеют глубокие сети

Далее была лекция Руслана Салахутдинова из Carnegie-Melon University и Apple с обзором возможностей глубокого обучения для решения различных задач. С точки зрения подачи материала, на мой взгляд, это была одна из лучших лекций. Вообще, интересующимся глубоким обучением рекомендую ознакомиться с лекциями данного товарища, коих в интернете достаточно (например, ). Приведу несколько примеров.

За последние несколько лет глубокие сети совершили прорыв, не только количественный, но и качественный – начали появляться новые задачи, комбинирующие визуальную и текстовую аналитику. Если 2-3 года назад сети умели только классифицировать тематику картинки, то теперь они легко могут дать словесное описание всей сцены на естественном языке (задача caption generation).

Кроме того, подобные системы умеют явно выделять на картинке объекты, соответствующие каждому отдельному слову из описания (так называемые Visual Attention Networks).

Основной вектор развития рекуррентных сетей связан с переходом к более совершенным механизмам запоминания контекста. В свое время в сфере рекуррентных сетей подобный прорыв совершили LSTM (long short-term memory) сети. Сейчас также разрабатываются сети с разными моделями памяти и один из таких вариантов - это сети MAGE, memory as acyclic graph enconding, способные моделировать долговременные ассоциации в тексте.

Или совсем поражающая воображение штука - сети с динамической памятью (Dynamic Memory Networks), которые не просто анализируют картинки или текст, но еще умеют отвечать на любой заданный вопрос касательно этой картинки или текста.

Далее был интересный блок про обучение с подкреплением (reinforcment learning). С появлением глубокого обучения данный подход получил всплекс интереса. Новые алгоритмы также пытаются задействовать механизм памяти.

В двух словах, Reinforcment Learning – это обучение оптимальному поведению. Какие-то действия системы поощряются, какие-то штрафуются, и задача системы научиться правильно действовать. Основное отличие от обучения с учителем в том, что система получает поощрение не при каждом действии, а довольно редко, поэтому она должна самостоятельно выстраивать весьма сложные стратегии поведения.

Для обучения с подкреплением идеально подходит виртуальная среда, в частности компьютерные игры. Она позволяет создавать бесконечное количество экспериментов, давая возможность без ограничений обучаться алгоритму, что невозможно сделать в реальности.

Результат работы традиционного RL (без памяти) был продемонстрирован на примере игры Doom. Для обучения использовались несколько классических карт. За найденный ключ или убитого врага следовало поощрение, а например, за падение в лаву – наказание. Если на первых итерациях обучения бот упирался лбом в стену, то спустя 8 часов обучения, он с полоборота сносил игроков так, что те не успевали ничего понять. Система отлично обобщала получаемые знания и одинаково хорошо играла как на старых, так и на новых картах.

Если для шутеров классический RL вполне подходит, то для более сложных игр с логическими заданиями уже требуется запоминание контекста, т.е. наличие памяти. Для этого был разработан класс алгоритмов Reinforcment Learning with Structured Memory.

Про компьютерное зрение

Исторически самое первое применение глубоких сетей – это анализ изображений. Лекция от Microsoft была посвящена технологиям компьютерного зрения. Тимоти Хейзен выделил четыре основные задачи:
  • классификацию изображений,
  • поиск объектов на картинке (object detection),
  • сегментацию - выделение связных областей,
  • определение схожести.

Если до 2012 года бал правили традиционные подходы, когда генерация фичей для обучения модели выполнялась вручную (HOG, SIFT и прочее), то в 2012 году прорыв в качестве распознавания совершила глубокая нейронная сеть AlexNet. В дальнейшем глубокие архитектуры стали стандартом.

В области компьютерного зрения бенчмарком является конкурс ImageNet , на котором тестируются все новые архитектуры. В 2016 году первое место заняла сеть от Microsoft ResNet, содержащая больше 150 слоев. На картинке ниже приведено сравнение точности известных сверточных сетей. Тенденнция к увеличению количества слоев на лицо, однако вместе с ней актуальной становится проблема «убывающего градиента» - обучать такие сети все сложнее. Можно предположить, что дальнейшие улучшения будут связаны с изменением архитектуры сетей, а не в увеличении числа слоев.

В качестве примера приводилось четыре любопытных проекта, которые Microsoft делал в качестве консультантов.

  • Трекинг передвижения снежных леопардов в условиях дикой природы (подробнее )
  • Умный холодильник – когда заканчивается пиво, он отправляет владельцу срочную смску с предупреждением или сам делает заказ в магазине.
  • Распознавание аэрофотоснимков для анализа развития территорий ().
  • Избитая идея для Fashion-стартапа, когда по картинке определяется, что надето на человеке, и ищется максимально похожая одежда в ближайших магазинах. Кстати, если кому-то интересно, есть открытый датасет со шмотками.
Разумеется, не обошлось без рекламы двух своих продуктов: Cognitive Toolkit (CNTK) и Custom Vision – облачного сервиса для классификации изображений.

Я решил протестировать функционал Custom Vision и попробовал научить бинарную модель классификации отличать хипстеров от гопников. Для этого загрузил около 1000 изображений, из поиска Google Images. Никакой предобработки не делал, загружал как есть.

Модель обучалась несколько минут и в целом результаты получились неплохие (Precision: 78%, Recall: 89%). Да и на новых примерах классификатор работает корректно (см. ниже).

Антихайп

Интересно, что на конференции много докладов было связано с развенчанием мифов. Поскольку тема хайповая, пишут о ней много и не всегда по делу.

Очень часто звучала такая мысль: существующие сегодня нейронные сети нельзя назвать полноценным интеллектом. Пока это лишь его очень грубая модель, частично обладающая свойством обучаемости, но очень плохо обобщающая и лишенная того, что называют «common sense». Многие спикеры сходились в том, что для разработки действительно «умного» интеллекта потребуется не один десяток лет. Пока что мы даже толком не знаем, как работает мозг, не говоря уже о том, чтобы создать его полноценный искусственный аналог.

Сегодня не существует однозначного определения понятия «искусственный интеллект», но большинство экспертов сходится, что такой интеллект должен обладать набором базовых способностей, присущих человеческому, в частности умением:

  • обучаться,
  • планировать и решать поставленные задачи,
  • обобщать,
  • коммуницировать с людьми.
Определенных успехов мы добились, пожалуй, только в способности обучения, а все остальное остается на очень базовом уровне. Потенциал развития искусственного интеллекта в ближайшие годы видится как раз в развитии этих характеристик.

Про One-shot Learning и Transfer Learing

Обучение с учителем – стандартный подход сегодня, однако он все чаще критикуется. Несколько раз звучала интересная мысль о том, что будущее машинного обучения за обучением без учителя, или по крайней мере роль учителя будет уменьшаться.

Ведь чтобы понять, что не стоит совать пальцы в розетку, человеку в отличие от нейросети не нужно 10 тысяч раз повторять этот опыт, и обычно он запоминает с первого (хотя не все, конечно). Помимо базовых инстинктов человек обладает неким здравым смыслом, предобученной базой знаний, которая позволяет ему легко делать обобщения. Есть гипотеза, что она заложена в сформировавшийся за годы эволюции неокортекс – присущую только высшим млекопитающим часть мозга, отвечающую за обучение.

Поэтому одно из направлений развития ИИ, которым сейчас активно занимается сообщество, – продвижение подхода One-shot Learning – вида обучения, при котором алгоритм способен делать обобщения, анализируя очень небольшое количество обучающих кейсов (в идеале один). В перспективе машины при принятии решения должны будут моделировать возможные ситуации, а не просто повторять решение на основе опыта. Способность обобщать – неотъемлемая черта любого интеллекта.

Чтобы проиллюстрировать сказанное, найдите в двух наборах ниже объекты, аналогичные выделенным. В отличие от компьютерной программы, человек, как правило, довольно легко справляется с этой задачей.

Еще одна близкая тема – это использование так называемого Transfer Learning – модели обучения, при которой предварительно обучается некая универсальная «грубая» модель, а затем для решения более специфических задач она дообучается уже на новых данных. Главное преимущество в том, что процесс обучения в этом случае выполняется в разы быстрее.

Чаще этот термин употребляется в контексте компьютерного зрения, но на самом деле идея легко обобщается на любые задачи ИИ. В качестве примера – многочисленные предобученные сети для распознавания изображений от Google или Microsoft. Эти сети натренированы распознавать базовые элементы изображения, для решения же конкретных задач необходимо дообучить всего несколько выходных слоев такой сети.

Вместо заключения

В целом поездка оказалась весьма поучительной и дала немало пищи для размышлений. Всегда приятно оказаться в компании профессионалов, которые занимаются примерно тем же, что и ты. Резюмировать мои впечатления от конференции, наверное, можно так: несмотря на то, что до создания настоящего искусственного интеллекта человечеству еще далеко, тема сегодня развивается семимильными шагами и находит все новые точки приложения в совешенно разных и порой неожиданных областях. Технологии, которые пару лет назад считались экзотикой, постепенно становятся новым стандартом.

Следующая конференция данной серии планируется в апреле 2018 года.

Теги:

  • искусственный интеллект
  • O’Reilly
  • Strata Artificial Intelligence
  • CleverDATA
Добавить метки 5 марта 2017 в 12:57

Будущее искусственного интеллекта

  • Искусственный интеллект ,
  • Перевод

Последствия и этические проблемы сильного ИИ

При каждом обсуждении ИИ всегда возникают две проблемы: как он повлияет на человечество, и как нам к нему относиться? Литературу всегда можно рассматривать как хороший индикатор мыслей и чувств, отражающий настроения людей, и в научной фантастике полно примеров этих проблем. Попытается ли достаточно передовой ИИ устранить человечество, как Skynet ? Или ИИ необходимо будет давать права и защиту, во избежание таких проявлений жестокости, какие встречаются в "A.I. Artificial Intelligence "?


Страшный ИИ

В обоих случаях смысл состоит в том, что с созданием настоящего ИИ придёт технологическая сингулярность . Технологическая сингулярность – период экспоненциального роста технологий, происходящий на небольшом временном отрезке. Идея в том, что ИИ сможет улучшать самого себя или производить более передовые ИИ. Так как это будет происходить быстро, кардинальные перемены могут случиться за один день, и в результате появится ИИ гораздо более совершенный, чем тот, что был создан человечеством. Это может означать, что в результате у нас появится сверхумный и недоброжелательный ИИ, или разумный ИИ, достойный обладать правами.

Недоброжелательный ИИ

Что, если этот гипотетический сверхумный ИИ решит, что человечество ему не нравится? Или же мы будем ему безразличны? Нужно ли бояться этой возможности и принимать меры предосторожности? Или же эти страхи – результаты безосновательной паранойи?

Сэндс считает: «ОИИ произведёт революцию, и его применение определи, позитивное это будет влияние, или негативное. Примерно так же расщепление атома можно рассматривать как обоюдоострый меч». Конечно, тут речь идёт только об ОИИ, а не о сильном ИИ. Что насчёт возможности появления разумного сильного ИИ?

Скорее всего, потенциала можно ожидать не от злонамеренного, а от индифферентного ИИ. Альберт рассматривает пример с простой задачей, поставленной ИИ: «Есть такая история, что владелец фабрики по производству скрепок задал ИИ вроде бы простую задачу: максимизацию производства. А затем ОИИ воспользовался своим интеллектом и придумал, как превратить всю планету в скрепки!»

Альберт отметает возможность, описанную в этом смешном мысленном эксперименте: «Вы хотите сказать, что этот ОИИ понимает человеческую речь, сверхумный, но ему недоступны связанные с запросом тонкости? Или, что он не сможет задать уточняющие вопросы, или догадаться, что превращение всех людей в скрепки – это плохая идея?».

То есть, если ИИ достаточно умён для того, чтобы понять и запустить опасный для людей сценарий, он должен быть достаточно умным для того, чтобы понять, что этого делать не стоит. Три закона робототехники Азимова тоже могут сыграть свою роль, хотя остаётся вопрос, можно ли будет реализовать их таким образом, чтобы ИИ не смог их поменять? А что насчёт благополучия самого ИИ?

Права ИИ

На противоположной стороне проблемы стоит вопрос, заслуживает ли ИИ защиты и получения прав? Если бы появился разумный ИИ, можно ли позволять человеку просто отключать его? Как к нему относиться? Права животных и сейчас очень спорные, и пока что нет согласия в том, обладают ли животные сознанием или разумом .

По-видимому, те же споры развернутся по поводу существ с ИИ. Будет ли рабством заставлять ИИ работать день и ночь на благо человечества? Должны ли мы платить ему за услуги? Что с этой оплатой будет делать ИИ?


Фильм плохой, идея хорошая

Маловероятно, что у нас в ближайшее время появятся ответы на эти вопросы, в особенности, ответы, устраивающие всех. «Как мы можем гарантировать, что у ИИ, сравнимого с человеком, будут такие же права, как у человека? Учитывая, что эта интеллектуальная система фундаментально отличается от человека, как мы можем определить фундаментальные права ИИ? Кроме того, если считать ИИ искусственной формой жизни, есть ли у нас право отнимать у него эту жизнь (отключать)? До того, как создать ОИИ, необходимо серьёзно продумать вопросы этики», – говорит Сэндс.

В то время, как продолжается исследование ИИ, эти и другие этические вопросы, несомненно, будут вызывать споры. Судя по всему, мы ещё довольно далеко от того момента, когда они окажутся актуальными. Но и сейчас уже для их обсуждения организовываются конференции .

Как поучаствовать

Исследование и эксперименты с ИИ традиционно находились в ведении учёных и исследователей из корпоративных лабораторий. Но в последние годы растущая популярность свободной информации и открытого кода распространилась даже на ИИ. Если вам интересно заняться будущим ИИ, для этого есть несколько способов.

Проводить самостоятельные эксперименты с ИИ можно при помощи доступного ПО. У Google есть



Рассказать друзьям