Закон сохранения энергии кто сформулировал. Закон сохранения и превращение энергии

💖 Нравится? Поделись с друзьями ссылкой

Данный видеоурок предназначен для самостоятельного ознакомления с темой «Закон сохранения механической энергии». Вначале дадим определение полной энергии и замкнутой системы. Затем сформулируем Закон сохранения механической энергии и рассмотрим, в каких областях физики можно его применять. Также мы дадим определение работы и научимся её определять, рассмотрев связанные с ней формулы.

Темой урока является один из фундаментальных законов природы - закон сохранения механической энергии .

Мы ранее говорили о потенциальной и кинетической энергии, а также о том, что тело может обладать вместе и потенциальной, и кинетической энергией. Прежде чем говорить о законе сохранения механической энергии вспомним, что такое полная энергия. Полной механической энергией называют сумму потенциальной и кинетической энергий тела.

Также вспомним, что называют замкнутой системой. Замкнутая система - это такая система, в которой находится строго определенное количество взаимодействующих между собой тел и никакие другие тела извне на эту систему не действуют.

Когда мы определились с понятием полной энергии и замкнутой системы, можно говорить о законе сохранения механической энергии. Итак, полная механическая энергия в замкнутой системе тел, взаимодействующих друг с другом посредством сил тяготения или сил упругости (консервативных сил), остается неизменной при любом движении этих тел.

Мы уже изучали закон сохранения импульса (ЗСИ):

Очень часто случается так, что поставленные задачи можно решить только с помощью законов сохранения энергии и импульса.

Рассмотреть сохранение энергии удобно на примере свободного падения тела с некоторой высоты. Если некоторое тело находится в состоянии покоя на некоторой высоте относительно земли, то это тело обладает потенциальной энергией. Как только тело начинает свое движение, высота тела уменьшается, уменьшается и потенциальная энергия. При этом начинает нарастать скорость, появляется энергия кинетическая. Когда тело приблизилось к земле, то высота тела равна 0, потенциальная энергия тоже равна 0, а максимальной будет являться кинетическая энергия тела. Вот здесь и просматривается превращение потенциальной энергии в кинетическую (рис. 1). То же самое можно сказать о движении тела наоборот, снизу вверх, когда тело бросают вертикально вверх.

Рис. 1. Свободное падение тела с некоторой высоты

Дополнительная задача 1. «О падении тела с некоторой высоты»

Задача 1

Условие

Тело находится на высоте от поверхности Земли и начинает свободно падать. Определите скорость тела в момент соприкосновения с землей.

Решение 1:

Начальная скорость тела . Нужно найти .

Рассмотрим закон сохранения энергии.

Рис. 2. Движение тела (задача 1)

В верхней точке тело обладает только потенциальной энергией: . Когда тело приблизится к земле, то высота тела над землей будет равна 0, а это означает, что потенциальная энергия у тела исчезла, она превратилась в кинетическую:

Согласно закону сохранения энергии можем записать:

Масса тела сокращается. Преобразуя указанное уравнение, получаем: .

Окончательный ответ будет: . Если подставить все значение, то получим:.

Ответ: .

Пример оформления решения задачи:

Рис. 3. Пример оформления решения задачи № 1

Данную задачу можно решить еще одним способом, как движение по вертикали с ускорением свободного падения.

Решение 2 :

Запишем уравнение движения тела в проекции на ось :

Когда тело приблизится к поверхности Земли, его координата будет равна 0:

Перед ускорением свободного падения стоит знак «-», поскольку оно направлено против выбранной оси .

Подставив известные величины, получаем, что тело падало на протяжении времени . Теперь запишем уравнение для скорости:

Полагая ускорение свободного падения равным получаем:

Знак минус означает, что тело движется против направления выбранной оси.

Ответ: .

Пример оформления решения задачи № 1 вторым способом.

Рис. 4. Пример оформления решения задачи № 1 (способ 2)

Также для решения данной задачи можно было воспользоваться формулой, которая не зависит от времени:

Конечно, нужно отметить, что данный пример мы рассмотрели с учетом отсутствия сил трения, которые в реальности действуют в любой системе. Обратимся к формулам и посмотрим, как записывается закон сохранения механической энергии:

Дополнительная задача 2

Тело свободно падает с высоты . Определите, на какой высоте кинетическая энергия равна трети потенциальной ().

Рис. 5. Иллюстрация к задаче № 2

Решение:

Когда тело находится на высоте , оно обладает потенциальной энергией, и только потенциальной. Эта энергия определяется формулой: . Это и будет полная энергия тела.

Когда тело начинает двигаться вниз, уменьшается потенциальная энергия, но вместе с тем нарастает кинетическая. На высоте, которую нужно определить, у тела уже будет некоторая скорость V. Для точки, соответствующей высоте h, кинетическая энергия имеет вид:

Потенциальная энергия на этой высоте будет обозначена следующим образом: .

По закону сохранения энергии, у нас полная энергия сохраняется. Эта энергия остается величиной постоянной. Для точки мы можем записать следующее соотношение: (по З.С.Э.).

Вспоминая, что кинетическая энергия по условию задачи составляет , можем записать следующее: .

Обратите внимание: масса и ускорение свободного падения сокращается, после несложных преобразований мы получаем, что высота, на которой такое соотношение выполняется, составляет .

Ответ:

Пример оформления задачи 2.

Рис. 6. Оформление решения задачи № 2

Представьте себе, что тело в некоторой системе отсчета обладает кинетической и потенциальной энергией. Если система замкнутая, то при каком-либо изменении произошло перераспределение, превращение одного вида энергии в другой, но полная энергия остается по своему значению той же самой (рис. 7).

Рис. 7. Закон сохранения энергии

Представьте себе ситуацию, когда по горизонтальной дороге движется автомобиль. Водитель выключает мотор и продолжает движение уже с выключенным мотором. Что в этом случае происходит (рис. 8)?

Рис. 8. Движение автомобиля

В данном случае автомобиль обладает кинетической энергией. Но вы прекрасно знаете, что с течением времени автомобиль остановится. Куда девалась в этом случае энергия? Ведь потенциальная энергия тела в данном случае тоже не изменилась, она была какой-то постоянной величиной относительно Земли. Как произошло изменение энергии? В данном случае энергия пошла на преодоление сил трения. Если в системе встречается трение, то оно также влияет на энергию этой системы. Посмотрим, как записывается в данном случае изменение энергии.

Изменяется энергия, и это изменение энергии определяется работой против силы трения. Определить работу силы трения мы можем с помощью формулы, которая известна из 7 класса (сила и перемещение направлены противоположно):

Итак, когда мы говорим об энергии и работе, то должны понимать, что каждый раз мы должны учитывать и то, что часть энергии расходуется на преодоление сил трения. Совершается работа по преодолению сил трения. Работа является величиной, которая характеризует изменение энергии тела.

В заключение урока хотелось бы сказать, что работа и энергия по сути своей связанные величины через действующие силы.

Дополнительная задача 3

Два тела - брусок массой и пластилиновый шарик массой - движутся навстречу друг другу с одинаковыми скоростями (). После столкновения пластилиновый шарик прилип к бруску, два тела продолжают движение вместе. Определить, какая часть механической энергии превратилась во внутреннюю энергию этих тел, с учетом того что масса бруска в 3 раза больше массы пластилинового шарика ().

Решение:

Изменение внутренней энергии можно обозначить . Как вы знаете, существует несколько видов энергии. Кроме механической, существует еще и тепловая, внутренняя энергия.

В общем случае тело обладает одновременно как кинетической, так и потенциальной энергией. Их сумму называют полной механической энергией :

E = E к + E п (15.1)

Это понятие было введено в 1847 г. 26-летним немецким ученым Г. Гельмгольцем.

Что происходит с полной механической энергией по мере движения тела? Чтобы выяснить это, рассмотрим простое явление.

Бросим вертикально вверх мяч. Придав мячу скорость, мы тем самым сообщим ему некоторую кинетическую энергию. По мере движения мяча вверх его движение будет замедляться притяжением Земли и скорость, а вместе с ней и кинетическая энергия мяча будут становиться все меньше и меньше. Потенциальная же энергия мяча вместе с высотой h будет при этом возрастать. В высшей точке траектории (на максимальной высоте) потенциальная энергия мяча достигнет своего наибольшего значения, а кинетическая энергия окажется равной нулю. После этого мяч начнет падать вниз, постепенно набирая скорость. Кинетическая энергия при этом начнет увеличиваться, а потенциальная энергия (из-за уменьшения высоты) - убывать. В момент удара о землю кинетическая энергия мяча достигнет максимального значения, а потенциальная энергия обратится в нуль.

Итак, когда кинетическая энергия тела уменьшается, потенциальная энергия возрастает, и наоборот, когда кинетическая энергия тела увеличивается, его потенциальная энергия убывает. Изучение свободного падения тела (в отсутствие сопротивления воздуха) показывает, что всякое уменьшение одного из этих видов энергии сопровождается равным увеличением другого вида энергии. Полная же механическая энергия тела при этом сохраняется. В этом состоит закон сохранения механической энергии :

Полная механическая энергия тела, на которое не действуют силы трения и сопротивления, в процессе его движения остается неизменной.

Если обозначить начальную и конечную энергии тела через E и E", то закон сохранения энергии можно выразить в виде следующего равенства:

Предположим, что свободно движущееся тело в начальный момент времени находилось на высоте h0 и имело при этом скорость v0. Тогда его полная механическая энергия в этот момент времени была равна

Если спустя некоторое время рассматриваемое тело окажется на высоте h, имея скорость v (рис. 28), то его полная механическая энергия станет равной

Согласно закону сохранения энергии, оба эти значения энергии должны совпадать. Поэтому

Если начальные значения h0 и v0 известны, то это уравнение позволяет найти скорость тела v на высоте h или, наоборот, высоту h, на которой тело будет иметь заданную скорость v. Масса тела при этом никакой роли играть не будет, так как в уравнении (15.5) она сокращается.


Следует помнить, что полная механическая энергия сохраняется лишь тогда, когда отсутствуют силы трения и сопротивления. Если же эти силы присутствуют, то их действие приводит к уменьшению механической энергии.

1. Что называют полной механической энергией? 2. Сформулируйте закон сохранения механической энергии. 3. С какой энергией - кинетической или потенциальной - совпадает полная механическая энергия свободно падающего тела в момент удара о землю? 4. С какой энергией совпадает полная механическая энергия брошенного вертикально вверх мяча в момент, когда он оказывается в высшей точке своего полета? 5. Что происходит с полной механической энергией тела при наличии сил трения и сопротивления?

Лекция 3. Работа и энергия. Законы сохранения энергии и импульса

Гл.2-3, §9-11

План лекции

    Работа и мощность

    Закон сохранения импульса.

    Энергия. Потенциальная и кинетическая энергии. Закон сохранения энергии.

    Работа и мощность

Когда под действием некоторой силы тело совершает перемещение, то действие силы характеризуется величиной, которая называется механической работой.

Механическая работа - мера действия силы, в результате которого тела совершают перемещение.

Работа постоянной силы. Если тело движется прямолинейно под действием постоянной силы , составляющей некоторый угол с направлением перемещения (рис.1), работа равна произведению этой силы на перемещение точки приложения силы и на косинус угла между векторами и; или работа равна скалярному произведению вектора силы на вектор перемещения:


Работа переменной силы. Чтобы найти работу переменной силы, пройденный путь разбивают на большое число малых участков так, чтобы их можно было считать прямолинейными, а действующую в любой точке данного участка силу - постоянной.

Элементарная работа (т.е. работа на элементарном участке ) равна , а вся работа переменной силы на всем путиS находится интегрированием: .

В качестве примера работы переменной силы рассмотрим работу, совершаемую при деформации (растяжении) пружины, подчиняющейся закону Гука.

Если начальная деформация x 1 =0, то .

При сжатии пружины совершается такая же работа.

Графическое изображение работы (рис.3).

На графиках работа численно равна площади заштрихованных фигур.

Для характеристики быстроты совершения работы вводят понятие мощности.

Мощность постоянной силы численно равна работе, совершаемой этой силой за единицу времени.

1 Вт- это мощность силы, которая за 1 с совершает 1 Дж работы.

В случае переменной мощности (за малые одинаковые промежутки времени совершается различная работа) вводится понятие мгновенной мощности:

где
скорость точки приложения силы.

Т.о. мощность равна скалярному произведению силы на скоростьточки её приложения.

Т.к.

2. Закон сохранения импульса.

Механической системой называется совокупность тел, выделенная для рассмотрения. Тела, образующие механическую систему, могут взаимодействовать, как между собой, так и с телами, не принадлежащими данной системе. В соответствие с этим силы, действующие на тела системы, подразделяют на внутренние и внешние.

Внутренними называются силы, с которыми тела системы взаимодействуют между собой

Внешними называются силы, обусловленные воздействием тел, не принадлежащих данной системе.

Замкнутой (или изолированной) называется система тел, на которую не действуют внешние силы.

Для замкнутых систем оказываются неизменными (сохраняются) три физических величины: энергия, импульс и момент импульса. В соответствии с этим имеют место три закона сохранения: энергии, импульса, момента импульса.

Рассмотрим систему, состоящую из 3-х тел, импульсы которых
и на которые действуют внешние силы(рис. 4).Согласно 3 закону Ньютона, внутренние силы попарно равны и противоположно направлены:

Внутренние силы:

Запишем основное уравнение динамики для каждого из этих тел и сложим почленно эти уравнения

Для N тел:

.

Сумма импульсов тел, составляющих механическую систему, называется импульсом системы:

Т.о., производная по времени импульса механической системы равна геометрической сумме внешних сил, действующих на систему,

Для замкнутой системы
.

Закон сохранения импульса : импульс замкнутой системы материальных точек остается постоянным.

Из этого закона следует неизбежность отдачи при стрельбе из любого орудия. Пуля или снаряд в момент выстрела получают импульс, направленный в одну сторону, а винтовка или орудие получают импульс, направленный противоположно. Для уменьшения этого эффекта применяют специальные противооткатные устройства, в которых кинетическая энергия орудия превращается в потенциальную энергию упругой деформации и во внутреннюю энергию противооткатного устройства.

Закон сохранения импульса лежит в основе движения судов (подводных лодок) при помощи гребных колес и винтов, и водометных судовых двигателей (насос всасывает забортную воду и отбрасывает ее за корму). При этом некоторое количество воды отбрасывается назад, унося с собой определенный импульс, а судно приобретает такой же импульс, направленный вперед. Этот же закон лежит в основе реактивного движения.

Абсолютно неупругий удар - столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое. При таком ударе механическая энергия частично или полностью переходит во внутреннюю энергию соударяющихся тел, т.е. закон сохранения энергии не выполняется, выполняется только закон сохранения импульса.

,

Теория абсолютно упругих и абсолютно неупругих ударов используется в теоретической механике для расчета напряжений и деформаций, вызванных в телах ударными силами. При решении многих задач удара часто опираются на результаты разнообразных стендовых испытаний, анализируя и обобщая их. Теория удара широко используется при расчетах взрывных процессов; применяется в физике элементарных частиц при расчетах столкновений ядер, при захвате частиц ядрами и в других процессах.

Большой вклад в теорию удара внёс российский академик Я.Б.Зельдович, который, разрабатывая в 30-х годах физические основы баллистики ракет, решил сложную задачу удара тела, летевшего с большой скоростью по поверхности среды.

3.Энергия. Потенциальная и кинетическая энергия. Закон сохранения энергии.

Все введенные ранее величины характеризовали только механическое движение. Однако форм движения материи много, постоянно происходит переход от одной формы движения к другой. Необходимо ввести физическую величину, характеризующую движение материи во всех формах её существования, с помощью которой можно было бы количественно сравнивать различные формы движения материи.

Энергия - мера движения материи во всех её формах. Основное свойство всех видов энергии - взаимопревращаемость. Запас энергии, которой обладает тело, определяется той максимальной работой, которую тело может совершать, израсходовав свою энергию полностью. Энергия численно равна максимальной работе, которую тело может совершить, и измеряется в тех же единицах, что и работа. При переходе энергии из одного вида в другой нужно подсчитать энергию тела или системы до и после перехода и взять их разность. Эту разность принято называть работой:

.

Т. о., физическая величина, характеризующая способность тела совершать работу, называется энергией.

Механическая энергия тела может быть обусловлена либо движением тела с некоторой скоростью, либо нахождением тела в потенциальном поле сил.

Кинетическая энергия.

Энергия, которой обладает тело вследствие своего движения, называется кинетической. Работа, совершенная над телом, равна приращению его кинетической энергии.

Найдем эту работу для случая, когда равнодействующая всех приложенных к телу сил равна .

Работа, совершенная телом за счет кинетической энергии, равна убыли этой энергии.

Потенциальная энергия.

Если в каждой точке пространства на тело воздействуют другие тела с силой, величина которой может быть различна в разных точках, говорят, что тело находится в поле сил или силовом поле.

Если линии действия всех этих сил проходит через одну точку - силовой центр поля, - а величина силы зависит только от расстояния до этого центра, то такие силы называются центральными, а поле таких сил - центральным (гравитационное, электрическое поле точечного заряда).

Поле постоянных во времени сил называется стационарным.

Поле, в котором линии действия сил - параллельные прямые, расположенные на одинаковом расстоянии друг от друга - однородное.

Все силы в механике подразделяются на консервативные и неконсервативные (или диссипативные).

Силы, работа которых не зависит от формы траектории, а определяется только начальным и конечным положением тела в пространстве, называются консервативными.

Работа консервативных сил по замкнутому пути равна нулю. Все центральные силы являются консервативными. Силы упругой деформации также являются консервативными силами. Если в поле действуют только консервативные силы, поле называется потенциальными (гравитационные поля).

Силы, работа которых зависит от формы пути, называются неконсервативными (силы трения).

Потенциальной энергией называют часть общей механической энергии системы, которая определяется только взаимным расположением тел, составляющих систему, и характером сил взаимодействия между ними. Потенциальная энергия - это энергия, которой обладают тела или части тела вследствие их взаимного расположения.

Понятие потенциальной энергии вводится следующим образом. Если тело находится в потенциальном поле сил (например, в гравитационном поле Земли), каждой точке поля можно сопоставить некоторую функцию (называемую потенциальной энергией) так, чтобы работа А 12 , совершаемая над телом силами поля при его перемещении из произвольного положения 1 в другое произвольное положение 2, была равна убыли этой функции на пути 12:

,

где
и
значения потенциальной энергии системы в положениях 1 и 2.

Записанное соотношение позволяет определить значение потенциальной энергии с точностью до некоторой неизвестной аддитивной постоянной. Однако, это обстоятельство не имеет никакого значения, т.к. во все соотношения входит только разность потенциальных энергий, соответствующих двум положениям тела. В каждой конкретной задаче уславливаются считать потенциальную энергию какого-то определенного положения тела равной нулю, а энергию других положений брать по отношению к нулевому уровню. Конкретный вид функциизависит от характера силового поля и выбора нулевого уровня. Поскольку нулевой уровень выбирается произвольно,может иметь отрицательные значения. Например, если принять за нуль потенциальную энергию тела, находящегося на поверхности Земли, то в поле сил тяжести вблизи земной поверхности потенциальная энергия тела массойm, поднятого на высоту h над поверхностью, равна
(рис. 5).

где
- перемещение тела под действием силы тяжести;

при
,
,

Потенциальная энергия этого же тела, лежащего на дне ямы глубиной H, равна

.

В рассмотренном примере речь шла о потенциальной энергии системы Земля-тело.

Потенциальной энергией может обладать не только система взаимодействующих тел, но отдельно взятое тело. В этом случае потенциальная энергия зависит от взаимного расположения частей тела.

Выразим потенциальную энергию упруго деформированного тела.

- потенциальная энергия упругой деформации, если принять, что потенциальная энергия недеформированного тела равна нулю;

где k - коэффициент упругости, x - деформация тела.

В общем случае тело одновременно может обладать и кинетической и потенциальной энергиями. Сумма этих энергий называется полной механической энергией тела:

Полная механическая энергия системы равна сумме её кинетической и потенциальной энергий. Полная энергия системы равна сумме всех видов энергии, которыми обладает система.

Закон сохранения энергии - результат обобщения многих экспериментальных данных. Идея этого закона принадлежит Ломоносову, изложившему закон сохранения материи и движения, а количественная формулировка дана немецким врачом Майером и естествоиспытателем Гельмгольцем.

Закон сохранения механической энергии : в поле только консервативных сил полная механическая энергия остается постоянной в изолированной системе тел. Наличие диссипативных сил (сил трения) приводит к диссипации (рассеянию) энергии, т.е. превращению её в другие виды энергии и нарушению закона сохранения механической энергии.

Закон сохранения и превращения полной энергии : полная энергия изолированной системы есть величина постоянная.

Энергия никогда не исчезает и не появляется вновь, а лишь превращается из одного вида в другой в эквивалентных количествах. В этом и заключается физическая сущность закона сохранения и превращения энергии: неуничтожимость материи и её движения.

Потенциальная энергия - это, скорее, абстрактная величина, ведь любой предмет, который имеет некоторую высоту над поверхностью Земли, уже будет обладать определенным количеством потенциальной энергии. Она рассчитывается путем умножения скорости свободного падения на высоту над Землей, а также на массу. Если же тело двигается, можно говорить о наличии кинетической энергии.

Формула и описание закона

Результат сложения кинетической и потенциальной энергии в закрытой от внешнего воздействия системе, части которой взаимодействуют благодаря силам упругости и тяготения, не изменяется - так звучит закон сохранения энергии в классической механике. Формула данного закона выглядит так: Ек1+Еп1=Ек2+Еп2. Здесь Ек1 является кинетической энергией определенного физического тела в конкретный момент времени, а Еп1 - потенциальной. То же самое верно и для Ек2 и Еп2, но уже в следующий временной промежуток. Но этот закон верен только в том случае, если система, в которой он действует, является замкнутой (или консервативной). Это говорит о том, что значение полной механической энергии не изменяется, когда на систему действуют лишь консервативные силы. Когда в действие вступают неконсервативные силы, часть энергии изменяется, принимая другие формы. Такие системы получили название диссипативных. Закон сохранения энергии работает, когда силы извне никак не действуют на тело.

Пример проявления закона

Одним из типичных примеров, иллюстрирующих описанный закон, служит проведение опыта с шариком из стали, который падает на плиту из этого же вещества или на стеклянную, отскакивая от нее примерно на ту же высоту, где он находился до момента падения. Данный эффект достигается за счет того, что когда предмет движется, энергия преобразуется несколько раз. Первоначально значение потенциальной энергии начинает стремиться к нулю, в то время как кинетическая увеличивается, но после столкновения она становится потенциальной энергией упругой деформации шара.

Это продолжается до момента полной остановки предмета, в который он начинает свое движение вверх за счет сил упругой деформации как плиты, так и упавшего предмета. Но при этом в дело вступает потенциальная энергия тяготения. Так как шарик при этом понимается примерно на ту же высоту, с которой он и упал, кинетическая энергия в нем одна и та же. Кроме этого, сумма всех энергий, действующих на движущийся предмет, остается одинаковой во время всего описанного процесса, подтверждая закон сохранения полной механической энергии.

Упругая деформация - что это?

Для того чтобы полностью понять приведенный пример, стоит более подробно разобраться с тем, что такое потенциальная энергия упругого тела - это понятие означает обладание упругостью, позволяющей при деформации всех частей данной системы вернуться в состояние покоя, совершая некоторую работу над телами, с которыми соприкасается физический объект. На работу сил упругости не влияет форма траектории движения, так как работа, совершаемая за счет них, зависит лишь от положения тела в начале и в конце движения.

Когда действуют внешние силы

Но закон сохранения не распространяется на реальные процессы, в которых участвует сила трения. В пример можно привести падающий на землю предмет. Во время столкновения кинетическая энергия и сила сопротивления возрастают. Этот процесс не вписывается в рамки механики, так как из-за возрастающего сопротивления повышается температура тела. Из вышесказанного следует вывод о том, что закон сохранения энергии в механике имеет серьезные ограничения.

Термодинамика

Первый закон термодинамики гласит: разность между количеством теплоты, накапливаемой благодаря работе, совершаемой над внешними объектами, равна изменению внутренней энергии данной неконсервативной термодинамической системы.

Но это утверждение чаще всего формулируется в другом виде: количество теплоты, полученное термодинамической системой, тратится на работу, совершаемую над объектами, находящимися вне системы, а также на изменение количества энергии внутри системы. Согласно данному закону, она не может исчезнуть, превращаясь из одной формы в другую. Из этого следует вывод о том, что создание машины, не потребляющей энергии (так называемого вечного двигателя), невозможно, так как система будет нуждаться в энергии извне. Но многие все же настойчиво пытались создать ее, не учитывая закон сохранения энергии.

Пример проявления закона сохранения в термодинамике

Опыты показывают, что термодинамические процессы невозможно обратить вспять. Примером тому может служить соприкосновение тел, имеющих различную температуру, при котором более нагретое будет отдавать тепло, а второе - принимать его. Обратный же процесс невозможен в принципе. Другим примером является переход газа из одной части сосуда в другую после открытия между ними перегородки, при условии что вторая часть пуста. Вещество в данном случае никогда не начнет движение в обратном направлении самопроизвольно. Из вышесказанного следует, что любая термодинамическая система стремится к состоянию покоя, при котором ее отдельные части находятся в равновесии и имеют одинаковую температуру и давление.

Гидродинамика

Применение закона сохранения в гидродинамических процессах выражается в принципе, описанном Бернулли. Он звучит так: сумма давления как кинестетической, так и потенциальной энергии на единицу объема одна и та же в любой отдельно взятой точке потока жидкости или газа. Это значит, что для измерения скорости потока достаточно измерить давление в двух точках. Делается это, как правило, манометром. Но закон Бернулли справедлив только в том случае, если рассматриваемая жидкость имеет вязкость, которая равна нулю. Для того чтобы описать течение реальных жидкостей, используется интеграл Бернулли, предполагающий добавление слагаемых, которые учитывают сопротивление.

Электродинамика

Во время электризации двух тел количество электронов в них остается неизменным, из-за чего положительный заряд одного тела равен по модулю отрицательному заряду другого. Таким образом, закон сохранения электрического заряда говорит о том, что в электрически изолированной системе сумма зарядов ее тел не изменяется. Это утверждение верно и тогда, когда заряженные частицы испытывают превращения. Таким образом, когда сталкиваются 2 нейтрально заряженные частицы, сумма их зарядов все равно остается равной нулю, так как вместе с отрицательно заряженной частицей появляется и положительно заряженная.

Заключение

Закон сохранения механической энергии, импульса и момента - фундаментальные физические законы, связанные с однородностью времени и его изотропностью. Они не ограничены рамками механики и применимы как к процессам, происходящим в космическом пространстве, так и к квантовым явлениям. Законы сохранения позволяют получать данные о различных механических процессах без их изучения при помощи уравнений движения. Если какой-то процесс в теории игнорирует данные принципы, то проводить опыты в таком случае бессмысленно, так как они будут нерезультативными.

Механическую, ядерную, электромагнитную, и т.д. Однако пока будем рассматривать только одну ее форму - механическую. Тем более что с точки зрения истории развития физики, она начиналась с изучения сил и работы. На одном из этапов становления науки был открыт закон сохранения энергии.

При рассмотрении механических явлений используют понятия кинетической и Экспериментально установлено, что энергия не исчезает бесследно, из одного вида она превращается в другой. Можно считать, что сказанное в самом общем виде формулирует закон сохранения

Сначала надо отметить, что в сумме потенциальная и тела называются механической энергией. Далее необходимо иметь в виду, что закон сохранения справедлив при отсутствии внешнего воздействия и дополнительных потерь, вызванных, например, преодолением сил сопротивления. Если какое-то из этих требований нарушено, то при изменении энергии будут происходить ее потери.

Самый простой эксперимент, подтверждающий указанные граничные условия, каждый может провести самостоятельно. Поднимите мячик на высоту и отпустите его. Ударившись об пол, он подскочит и потом опять упадет на пол, и опять подскочит. Но с каждым разом высота его подъема будет меньше и меньше, пока мяч не замрет неподвижно на полу.

Что мы видим в этом опыте? Когда мяч неподвижен и находится на высоте, он обладает только потенциальной энергией. Когда начинается падение, у него появляется скорость, и значит, появляется кинетическая энергия. Но по мере падения высота, с которой началось движение, становится меньше и, соответственно, становится меньше его потенциальная энергия, т.е. она превращается в кинетическую. Если провести расчёты, то выяснится, что значения энергии равны, а это означает, что закон сохранения энергии при таких условиях выполняется.

Однако в подобном примере есть нарушения двух ранее установленных условий. Мяч движется в окружении воздуха и испытывает сопротивление с его стороны, пусть и небольшое. И энергия затрачивается на преодоление сопротивления. Кроме того, мяч сталкивается с полом и отскакивает, т.е. он испытывает внешнее воздействие, а это второе нарушение граничных условий, которые необходимы, чтобы закон сохранения энергии был справедлив.

В конце концов скачки мяча прекратятся, и он остановится. Вся имеющаяся первоначальная энергия окажется потраченной на преодоление сопротивления воздуха и внешнего воздействия. Однако кроме превращения энергии окажется выполненной работа по преодолению сил трения. Это приведёт к нагреванию самого тела. Зачастую величина нагрева не очень значительная, и ее можно определить только при измерении точными приборами, но подобное изменение температуры существует.

Кроме механической, есть и другие виды энергии - световая, электромагнитная, химическая. Однако для всех разновидностей энергии справедливо, что из одного вида возможен переход в другой, и что при таких превращениях суммарная энергия всех видов остаётся постоянной. Это является подтверждением всеобщего характера сохранения энергии.

Здесь надо учесть, что переход энергии может означать и её бесполезную потерю. При механических явлениях свидетельством этого будет нагрев окружающей среды или взаимодействующих поверхностей.

Таким образом, простейшее механическое явление позволило нам определить закон сохранения энергии и граничные условия, обеспечивающие его выполнение. Была установлено, что осуществляется преобразование энергии из имеющегося вида в любой другой, и выявлен всеобщий характер упомянутого закона.



Рассказать друзьям