Как увидеть запрещенные цвета. Увидеть невозможное: как разглядеть недоступные для человеческого глаза цвета? Открытие невозможных цветов

💖 Нравится? Поделись с друзьями ссылкой
Периоды Группы
I II III IV V VI VII
H 2,1
Li 1,0 Be 1,5 B 2,0 C 2,5 N 3,0 O 3,5 F 4,0
Na 0,9 Mg 1,2 Al 1,6 Si 1,8 P 2,1 S 2,5 Cl 3,0
K 0,8 Ca 1,0 Ga 1,6 Ge 1,8 As 2,0 Se 2,4 Br 2,8
Rb 0,8 Sr 1,0 In 1,7 Sn 1,8 Sb 1,9 Te 2,1 I 2,5
Cs 0,7 Ba 0,9 Tl 1,8 Pb 1,6 Bi 1,9 Po 2,0 At 2,2

Примеры решения задач

Пример 1 . Объясните, почему алюминий и скандий находятся в одной группе, но в разных подгруппах?

Р е ш е н и е. 1) Запишем электронные конфигурации атомов и выделим валентные уровни: Al 1s 2 2s 2 2p 6 3s 2 3p 1

Sc 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1

2) Обоснуем расположение элементов Al и Sc в одной группе, но в разных подгруппах. Атомы алюминия и скандия имеют одинаковое число валентных электронов – три. Следовательно, Al и Sc – это элементы одной группы (III). Однако характер заполнения валентного уровня у этих атомов различен. Алюминий – это p – элемент, у него последним заполняется p – подуровень внешнего энергетического уровня, поэтому валентными являются электроны 3s 2 3p 1 . Скандий – это d - элемент, у которого в последнюю очередь заполняется d – подуровень предпоследнего энергетического уровня, поэтому валентные электроны – 4s 2 3d 1 . Именно это является причиной расположения атомов Al и Sc в разных подгруппах: Al (IIIА) – в главной, а Sc (IIIB) – в побочной подгруппе.

Пример 2 . Руководствуясь положением элементов в Периодической системе, определите, какой из атомов – сера или теллур проявляет более сильные неметаллические свойства.

Р е ш е н и е. 1) Определяем координаты этих элементов в Периодической системе: S (3, VIA) и Те (5, VIA), т.е. эти элементы являются электронными аналогами, так как расположены в одной (главной) подгруппе VI группы.

2) Составляем электронные формулы атомов этих элементов и выделяем строение внешних уровней (именно они ответственны за химические свойства любого атома):
S – 1s 2 2s 2 2p 6 3s 2 3p 4 , Те – 1s 2 2s 2 3s 2 Зр 6 3d 10 4s 2 4р 6 4d 10 5s 2 5р 4

Действительно, атомы S и Те имеют сходное строение внешнего уровня, который можно представить в виде ns 2 nр 4 , т.е. на внешнем уровне находится 6 валентных электронов.

3) Сравним неметаллические свойства атомов S и Те . Неметаллические свойства определяются способностью атома присоединять электроны при их химическом взаимодействии. Неметаллические свойства атомов зависят от конфигурации внешнего уровня, радиуса атома (г ат) и величины энергии сродства к электрону (Е е ).

Как уже отмечалось, элементы S и Те расположены в одной группе, имеют сходное строение внешнего уровня - ns 2 nр 4 . Однако атом S имеет три энергетических уровня, а атом Те – пять, поэтому валентные электроны у S расположены ближе к ядру. Радиус атома S меньше, чем радиус атома Те , а энергия сродства к электрону больше, чем Е е атома Te (в главной подгруппе сверху вниз г ат увеличивается, а Е е уменьшается). Поэтому атом S обладает большей способностью присоединять электроны. Следовательно, атом S по сравнению с атомом Те проявляет более сильные неметаллические свойства.

Пример 3 . Руководствуясь Периодической системой, определите какой из элементов – магний или алюминий обладает более выраженными металлическими свойствами.

Р е ш е н и е. 1) Химические свойства элементов определяются электронным строением внешних уровней их атомов. Запишем электронные конфигурации атомов магния и алюминия. Они расположены в третьем периоде (имеют одинаковое число энергетических уровней, равное трем). Магний – элемент второй группы, имеет два валентных ē . Алюминий – элемент третьей группы, имеет три валентных ē . Оба элемента расположены в главных подгруппах, т.е. все валентные электроны находятся на внешнем уровне. Отсюда электронные конфигурации внешних уровней: Mg 2s 2 , Al 3s 2 3p 1 .

2) Сравним металлические свойства атомов этих элементов – способность отдавать электроны при химическом взаимодействии. Металлические свойства зависят от конфигурации внешнего уровня, радиуса атома (r ат ) и энергии ионизации (Е и ). Магний и алюминий находятся в одном периоде. При переходе от Mg к Al происходит увеличение заряда ядра и числа ē на внешнем уровне, которые все сильнее удерживаются ядром атома вследствие уменьшения r ат . При этом Е и возрастает и способность атома к отдаче электронов уменьшается. Следовательно, магний обладает более сильными металлическими свойствами, чем алюминий.

1.3. Химическая связь

Выделяют три типа химической связи: ковалентную, ионную и металлическую.

Ковалентная связь – химическая связь, осуществляемая общими электронными парами. В соответствии с методом валентных связей (ВС) ковалентная связь между двумя атомами осуществляется общей для этих атомов парой электронов с противоположными спинами . В момент образования связи атомные орбитали перекрываются, что приводит к увеличению электронной плотности между ядрами взаимодействующих атомов и к взаимному притяжению ядер к области повышенной электронной плотности. В результате этого происходит выделение энергии и потенциальная энергия системы уменьшается.

Общая для двух атомов электронная пара может образовываться по двум механизмам: обменному или донорно-акцепторному.

При обменном механизме два связываемых атома (А и В) предоставляют для образования связи по одному неспаренному электрону, как бы обмениваясь ими:

А +В→ А В А

Донорно-акцепторный механизм образования связи заключается в том, что один атом А (донор) на образование связи предоставляет пару электронов, а другой атом В (акцептор) – вакантную атомную орбиталь.

Различают две разновидности ковалентной связи: неполярную и полярную.

Ковалентная неполярная связь – это связь, при которой область повышенной электронной плотности расположена симметрично относительно ядер обоих атомов. Такая связь образуется между атомами с одинаковой электроотрицательностью (ЭО ), например, в молекулах Cl 2 , O 2 , H 2 и др.

Ковалентная полярная связь – это связь, при которой область повышенной электронной плотности смещена к ядру атома с большей ЭО . В результате этот атом приобретает эффективный отрицательный заряд, а на другом менее электроотрицательном атоме возникает равный по величине эффективный положительный заряд. Такая система представляет собой электрический диполь. Полярная связь образуется между атомами с разной ЭО , например, в молекулах HCl, HI, H 2 O, H 2 S, CO и др. Чем больше разность электроотрицательностей атомов, образующих связь (∆ЭО А – В ), тем выше полярность связи.

Важнейшие свойства ковалентной связи – насыщаемость и направленность. Насыщаемость – это способность атомов образовывать ограниченное число ковалентных связей. В случае обменного механизма число связей равно числу неспаренных валентных электронов атома. Способность атома к образованию химических связей характеризуется валентностью.

Валентность определяется как число химических связей, которыми данный атом соединен с другими атомами. Она зависит от того, в каком состоянии - основном или возбужденном находится атом. Основное состояние – это устойчивое состояние с наименьшей энергией. При возбуждении спаренные валентные электроны разъединяются и переходят с одного подуровня на свободные АО другого, энергетически более высокого подуровня в пределах внешнего энергетического уровня. В результате число неспаренных электронов увеличивается, и атом данного элемента образует максимально возможное для него число химических связей, проявляя при этом высшую валентность и высшую положительную степень окисления, равную номеру группы в Периодической системе (см. примеры решения задач).

Ковалентная связь имеет направленность , которая обусловливает пространственную структуру молекулы, т.е. ее геометрическую форму. В зависимости от способа перекрывания АО различают σ (сигма)- , π (пи)- и
δ (дельта)- связи.

σ – связь обладает осевой симметрией относительно межъядерной оси, и область перекрывания АО лежит на межъядерной оси. Ее могут образовывать s – АО, p – АО и d – АО. Именно σ – связи определяют пространственную конфигурацию молекул:


π – связь образуется при перекрывании АО, расположенных параллельно друг другу. Область перекрывания лежит по обе стороны от межъядерной оси. В образовании π – связи могут участвовать p – и d – АО:

δ – связи образуют толькоd – АО.

Сигма – связь является самой прочной связью и всегда образуется в первую очередь. Между двумя атомами в молекуле возможна лишь одна σ – связь.

Для объяснения геометрической структуры молекул (или направленности ковалентной связи) используют представление о гибридизации атомных орбиталей центрального атома в молекуле АВ n .

Гибридизация – это выравнивание энергии различных АО у атома А в результате их смешения перед химическим взаимодействием, что приводит к образованию гибридных орбиталей. В гибридизации участвуют только АО одного уровня, например, 2s и 2p . Каждому виду гибридизации АО соответствует определенная геометрическая форма молекулы. Например, sp – гибридизации (две связи) соответствует линейная форма молекулы (BeCl 2 ), sp 2 – гибридизации (три связи) – плоская треугольная (BCl 3 ), sp 3 - гибридизации (четыре связи) – тетраэдрическая (CH 4 ).

Ионная связь – связь между ионами, осуществляемая их электростатическим взаимодействием. Ионная связь возникает между атомами металлов и неметаллов, резко отличающимися по своей электроотрицательности. Механизм образования ионной связи заключается в переходе электронов от одного атома к другому (более электроотрицательному), в результате чего атомы превращаются в противоположно заряженные ионы (катион и анион) и происходит их электростатическое взаимодействие. Свойства ионной связи – ненаправленность и ненасыщаемость.

Металлическая связь – это связь, образованная в результате перекрывания валентных орбиталей атомов металлов, в результате чего электроны свободно перемещаются из одной орбитали в другую, осуществляя связь между всеми атомами кристалла металла.

Примеры решения задач

Пример 1. Объясните механизм образования ковалентной химической связи в молекуле HBr и оцените степень ее полярности.

Р е ш е н и е. 1) Для объяснения механизма образования ковалентной химической связи необходимо определить, какие электроны участвуют в образовании этой связи. Запишем электронные конфигурации атомов и электронные схемы строения их валентных уровней; изобразим форму АО, участвующих в образовании связи.

Br 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5

Для образования ковалентной связи атомы водорода и брома предоставляют по одному неспаренному электрону с антипараллельными спинами: атом Н – электрон, находящийся на s – АО (форма АО – сфера), а атом Br – электрон с
p – АО (форма АО – гантель).

2) Покажем механизм образования ковалентной связи в молекуле HBr .

В молекуле HBr связь создается за счет перекрывания двух атомных орбиталей: s – АО и p – АО с образованием между ядрами атомов H и Br зоны повышенной электронной плотности:

H Br

3) Для определения степени полярности связи рассчитаем разность электроотрицательностей атомов, образующих молекулу: ЭО Н = 2,2; ЭО Br = 2,8; т.е. ЭО H − Br = 0,6, поэтому связь в молекуле HBr ковалентная полярная.

4) Определим вид химической связи в зависимости от способа перекрывания АО взаимодействующих атомов. В молекулах с одинарной химической связью (а именно таковой является молекула HBr ) всегда образуется σ – связь как более прочная. В случае σ – связи область перекрывания АО расположена на линии, соединяющей ядра двух атомов.

Пример 2. Определите химические свойства, валентность и возможные степени окисления атома углерода в основном и возбужденном состояниях.

Р е ш е н и е. 1) Рассмотрим основное состояние атома углерода. Так как химические свойства атома определяются его электронным строением, составим электронную конфигурацию атома С и выделим строениевалентного уровня:

С Z = +6 , 1s 2 2s 2 2p 2

2) Составим электронную схему валентного уровня и определим химические свойства атома С , его валентность и степень окисления.

Валентность атома определяется числом неспаренных электронов валентного уровня. Из данной схемы видно, что атом углерода имеет два неспаренных валентных электрона, значит в основном состоянии валентность атома углерода равна двум (В=II), т.е. атом углерода может образовывать две химические связи. Вступая во взаимодействие с другими атомами, атом С стремится завершить свой внешний уровень. Поэтому он может отдать эти два неспаренных электрона, проявляя при этом восстановительные свойства и превращаясь в положительно заряженный ион со степенью окисления +2: С 0 − 2 ē = С +2

2s 2 2p 2 2s 2 (типа He)

Но атом углерода, как неметалл, может принимать недостающие до завершения внешнего уровня четыре электрона, проявляя окислительные свойства и превращаясь в отрицательно заряженный ион со степенью окисления – 4:

С 0 + 4 ē = С -4

2s 2 2p 2 2s 2 2p 6 (типа Ne)

3) Рассмотрим возбужденное состояние атома углерода. Для возбуждения атома необходимо наличие свободной АО внутри валентного уровня и спаренных электронов. Из электронной схемы строения внешнего уровня атома углерода видно, что атом С имеет вакантную АО на 2p – подуровне, а из четырех валентных электронов два электрона (2s 2 ) спарены. Следовательно, атом углерода может находиться в возбужденном состоянии. При возбуждении происходит распаривание 2s 2 - электронов и переход их с 2s - на 2p – подуровень:

С 0 …2s 2 2p 2 → С* … 2s 1 2p 3

Основное состояние Возбужденное состояние

При возбуждении число неспаренных электронов увеличивается до четырех. Значит в возбужденном состоянии атом углерода проявляет валентность В=IV и образует четыре химические связи. В возбужденном состоянии атом С может только отдать на связь свои 4ē , проявляя восстановительные свойства и превращаясь в положительно заряженный ион со степенью окисления +4:

С 0 – 4 ē = С +4

2s 2 2p 2 1s 2 (типа He)

Пример 3. Определите, какая связь C−N или C−H является более полярной. Укажите, к ядру какого атома происходит смещение общей электронной пары.

Р е ш е н и е. Для определения полярности связи необходимо найти разность электроотрицательностей атомов (∆ЭО ), образующих эти связи. Из табл.1 выписываем значения ЭО этих атомов и находим ∆ЭО:
ЭО С = 2,5; ЭО N = 3,0; ЭО H = 2,1; ∆ЭО C − N = 3,0 – 2,5 = 0,5; ∆ЭО C − H = 2,5 – 2,1 = 0,4.

Известно, что чем больше ∆ЭО атомов, образующих связь, тем выше полярность связи. Поэтому более полярной является связь C–N . При образовании ковалентной связи общая электронная пара смещается к ядру атома с большей ЭО . В химической связи C−N общая электронная пара смещена к атому N , а в химической связи C−H – к атому С .

Электроотрицательность, как и прочие свойства атомов химических элементов, изменяется с увеличением порядкового номера элемента периодически:

График выше демонстрирует периодичность изменения электроотрицательности элементов главных подгрупп в зависимости от порядкового номера элемента.

При движении вниз по подгруппе таблицы Менделеева электроотрицательность химических элементов уменьшается, при движении вправо по периоду возрастает.

Электроотрицательность отражает неметалличность элементов: чем выше значение электроотрицательности, тем более у элемента выражены неметаллические свойства.

Степень окисления

Как рассчитать степень окисления элемента в соединении?

1) Степень окисления химических элементов в простых веществах всегда равна нулю.

2) Существуют элементы, проявляющие в сложных веществах постоянную степень окисления:

3) Существуют химические элементы, которые проявляют в подавляющем большинстве соединений постоянную степень окисления. К таким элементам относятся:

Элемент

Степень окисления практически во всех соединениях

Исключения

водород H +1 Гидриды щелочных и щелочно-земельных металлов, например:
кислород O -2 Пероксиды водорода и металлов:

Фторид кислорода —

4) Алгебраическая сумма степеней окисления всех атомов в молекуле всегда равна нулю. Алгебраическая сумма степеней окисления всех атомов в ионе равна заряду иона.

5) Высшая (максимальная) степень окисления равна номеру группы. Исключения, которые не попадают под это правило, — элементы побочной подгруппы I группы, элементы побочной подгруппы VIII группы, а также кислород и фтор.

Химические элементы, номер группы которых не совпадает с их высшей степенью окисления (обязательные к запоминанию)

6) Низшая степень окисления металлов всегда равна нулю, а низшая степень окисления неметаллов рассчитывается по формуле:

низшая степень окисления неметалла = № группы − 8

Отталкиваясь от представленных выше правил, можно установить степень окисления химического элемента в любом веществе.

Нахождение степеней окисления элементов в различных соединениях

Пример 1

Определите степени окисления всех элементов в серной кислоте.

Решение:

Запишем формулу серной кислоты:

Степень окисления водорода во всех сложных веществах +1 (кроме гидридов металлов).

Степень окисления кислорода во всех сложных веществах равна -2 (кроме пероксидов и фторида кислорода OF 2). Расставим известные степени окисления:

Обозначим степень окисления серы как x :

Молекула серной кислоты, как и молекула любого вещества, в целом электронейтральна, т.к. сумма степеней окисления всех атомов в молекуле равна нулю. Схематически это можно изобразить следующим образом:

Т.е. мы получили следующее уравнение:

Решим его:

Таким образом, степень окисления серы в серной кислоте равна +6.

Пример 2

Определите степень окисления всех элементов в дихромате аммония.

Решение:

Запишем формулу дихромата аммония:

Как и в предыдущем случае, мы можем расставить степени окисления водорода и кислорода:

Однако мы видим, что неизвестны степени окисления сразу у двух химических элементов — азота и хрома. Поэтому найти степени окисления аналогично предыдущему примеру мы не можем (одно уравнение с двумя переменными не имеет единственного решения).

Обратим внимание на то, что указанное вещество относится к классу солей и, соответственно, имеет ионное строение. Тогда справедливо можно сказать, что в состав дихромата аммония входят катионы NH 4 + (заряд данного катиона можно посмотреть в таблице растворимости). Следовательно, так как в формульной единице дихромата аммония два положительных однозарядных катиона NH 4 + , заряд дихромат-иона равен -2, поскольку вещество в целом электронейтрально. Т.е. вещество образовано катионами NH 4 + и анионами Cr 2 O 7 2- .

Мы знаем степени окисления водорода и кислорода. Зная, что сумма степеней окисления атомов всех элементов в ионе равна заряду, и обозначив степени окисления азота и хрома как x и y соответственно, мы можем записать:

Т.е. мы получаем два независимых уравнения:

Решая которые, находим x и y :

Таким образом, в дихромате аммония степени окисления азота -3, водорода +1, хрома +6, а кислорода -2.

Как определять степени окисления элементов в органических веществах можно почитать .

Валентность

Валентность атомов обозначается римскими цифрами: I, II, III и т.д.

Валентные возможности атома зависят от количества:

1) неспаренных электронов

2) неподеленных электронных пар на орбиталях валентных уровней

3) пустых электронных орбиталей валентного уровня

Валентные возможности атома водорода

Изобразим электронно-графическую формулу атома водорода:

Было сказано, что на валентные возможности могут влиять три фактора — наличие неспаренных электронов, наличие неподеленных электронных пар на внешнем уровне, а также наличие вакантных (пустых) орбиталей внешнего уровня. Мы видим на внешнем (и единственном) энергетическом уровне один неспаренный электрон. Исходя из этого, водород может точно иметь валентность, равную I. Однако на первом энергетическом уровне есть только один подуровень — s, т.е. атом водорода на внешнем уровне не имеет как неподеленных электронных пар, так и пустых орбиталей.

Таким образом, единственная валентность, которую может проявлять атом водорода, равна I.

Валентные возможности атома углерода

Рассмотрим электронное строение атома углерода. В основном состоянии электронная конфигурация его внешнего уровня выглядит следующим образом:

Т.е. в основном состоянии на внешнем энергетическом уровне невозбужденного атома углерода находится 2 неспаренных электрона. В таком состоянии он может проявлять валентность, равную II. Однако атом углерода очень легко переходит в возбужденное состояние при сообщении ему энергии, и электронная конфигурация внешнего слоя в этом случае принимает вид:

Несмотря на то что на процесс возбуждения атома углерода тратится некоторое количество энергии, траты с избытком компенсируются при образовании четырех ковалентных связей. По этой причине валентность IV намного более характерна для атома углерода. Так, например, валентность IV углерод имеет в молекулах углекислого газа, угольной кислоты и абсолютно всех органических веществ.

Помимо неспаренных электронов и неподеленных электронных пар на валентные возможности также влияет наличие вакантных () орбиталей валентного уровня. Наличие таких орбиталей на заполняемом уровне приводит к тому, что атом может выполнять роль акцептора электронной пары, т.е. образовывать дополнительные ковалентные связи по донорно-акцепторному механизму. Так, например, вопреки ожиданиям, в молекуле угарного газа CO связь не двойная, а тройная, что наглядно показано на следующей иллюстрации:

Валентные возможности атома азота

Запишем электронно-графическую формулу внешнего энергетического уровня атома азота:

Как видно из иллюстрации выше, атом азота в своем обычном состоянии имеет 3 неспаренных электрона, в связи с чем логично предположить о его способности проявлять валентность, равную III. Действительно, валентность, равная трём, наблюдается в молекулах аммиака (NH 3), азотистой кислоты (HNO 2), треххлористого азота (NCl 3) и т.д.

Выше было сказано, что валентность атома химического элемента зависит не только от количества неспаренных электронов, но также и от наличия неподеленных электронных пар. Связано это с тем, что ковалентная химическая связь может образоваться не только, когда два атома предоставляют друг другу по одному электрону, но также и тогда, когда один атом, имеющий неподеленную пару электронов — донор() предоставляет ее другому атому с вакантной () орбиталью валентного уровня (акцептору). Т.е. для атома азота возможна также валентность IV за счет дополнительной ковалентной связи, образованной по донорно-акцепторному механизму. Так, например, четыре ковалентных связи, одна из которых образована по донорно-акцепторному механизму, наблюдается при образовании катиона аммония:

Несмотря на то что одна из ковалентных связей образуется по донорно-акцепторному механизму, все связи N-H в катионе аммония абсолютно идентичны и ничем друг от друга не отличаются.

Валентность, равную V, атом азота проявлять не способен. Связано это с тем, что для атома азота невозможен переход в возбужденное состояние, при котором происходит распаривание двух электронов с переходом одного из них на свободную орбиталь, наиболее близкую по уровню энергии. Атом азота не имеет d -подуровня, а переход на 3s-орбиталь энергетически настолько затратен, что затраты энергии не покрываются образованием новых связей. Многие могут задаться вопросом, а какая же тогда валентность у азота, например, в молекулах азотной кислоты HNO 3 или оксида азота N 2 O 5 ? Как ни странно, валентность там тоже IV, что видно из нижеследующих структурных формул:

Пунктирной линией на иллюстрации изображена так называемая делокализованная π -связь. По этой причине концевые связи NO можно назвать «полуторными». Аналогичные полуторные связи имеются также в молекуле озона O 3 , бензола C 6 H 6 и т.д.

Валентные возможности фосфора

Изобразим электронно-графическую формулу внешнего энергетического уровня атома фосфора:

Как мы видим, строение внешнего слоя у атома фосфора в основном состоянии и атома азота одинаково, в связи с чем логично ожидать для атома фосфора так же, как и для атома азота, возможных валентностей, равных I, II, III и IV, что и наблюдается на практике.

Однако в отличие от азота, атом фосфора имеет на внешнем энергетическом уровне еще и d -подуровень с 5-ю вакантными орбиталями.

В связи с этим он способен переходить в возбужденное состояние, распаривая электроны 3s -орбитали:

Таким образом, недоступная для азота валентность V для атома фосфора возможна. Так, например, валентность, равную пяти, атом фосфора имеет в молекулах таких соединений, как фосфорная кислота, галогениды фосфора (V), оксид фосфора (V) и т.д.

Валентные возможности атома кислорода

Электронно-графическая формула внешнего энергетического уровня атома кислорода имеет вид:

Мы видим на 2-м уровне два неспаренных электрона, в связи с чем для кислорода возможна валентность II. Следует отметить, что данная валентность атома кислорода наблюдается практически во всех соединениях. Выше при рассмотрении валентных возможностей атома углерода мы обсудили образование молекулы угарного газа. Связь в молекуле CO тройная, следовательно, кислород там трехвалентен (кислород — донор электронной пары).

Из-за того что атом кислорода не имеет на внешнем уровне d -подуровня, распаривание электронов s и p- орбиталей невозможно, из-за чего валентные возможности атома кислорода ограничены по сравнению с другими элементами его подгруппы, например, серой.

Валентные возможности атома серы

Внешний энергетический уровень атома серы в невозбужденном состоянии:

У атома серы, как и у атома кислорода, в обычном состоянии два неспаренных электрона, поэтому мы можем сделать вывод о том, что для серы возможна валентность, равная двум. И действительно, валентность II сера имеет, например, в молекуле сероводорода H 2 S.

Как мы видим, у атома серы на внешнем уровне появляется d -подуровень с вакантными орбиталями. По этой причине атом серы способен расширять свои валентные возможности в отличие от кислорода за счет перехода в возбужденные состояния. Так, при распаривании неподеленной электронной пары 3p -подуровня атом серы приобретает электронную конфигурацию внешнего уровня следующего вида:

В таком состоянии атом серы имеет 4 неспаренных электрона, что говорит нам о возможности проявления атомами серы валентности, равной IV. Действительно, валентность IV сера имеет в молекулах SO 2 , SF 4 , SOCl 2 и т.д.

При распаривании второй неподеленной электронной пары, расположенной на 3s -подуровне, внешний энергетический уровень приобретает конфигурацию:

В таком состоянии уже становится возможным проявление валентности VI. Примером соединений с VI-валентной серой являются SO 3 , H 2 SO 4 , SO 2 Cl 2 и т.д.

Аналогично можно рассмотреть валентные возможности остальных химических элементов.

Sc 1,3 Ti 1,5 V 1,6 Cr 1,6 Mn 1,5

Fe 1,8 Co 1,9 Ni 1,9 Cu 1,9 Zn 1,6

Y 1,2 Zr 1,4 Nb 1,6 Mo 1,8 Tc 1,9

Ru 2,2 Rn 2,2 Pd 2,2 Ag 1,9 Cd 1,7

La 1,0 Hf 1,3 Ta 1,5 W 1,7 Re 1,9

Os 2,2 Ir 2,2 Pt 2,2 Au 2,4 Hg 1,9

Таким образом, чем более типичным металлом является элемент, тем ниже его электроотрицательность и наоборот, чем более типичным неметаллом является элемент, тем выше его электроотрицательность.

В периодах электроотрицательность растет, а в группах уменьшается с ростом Z , то есть растет от Cs к F по диагонали периодической системы. Это обстоятельство до некоторой степени определяет диагональное сходство элементов .

В главных и побочных подгруппах свойства элементов меняются немонотонно, что обусловлено так называемой вторичной периодичностью , связанной с влиянием d - и f -электронных слоев.

Из анализа периодичности геометрических и энергетических параметров атомов следует, что периодическим законом можно пользоваться для определения физико-химических констант, предсказывать изменение радиусов, энергий ионизации и сродства к электрону, и, следовательно, кислотно-основные и окислительно-восстановительные свойства их соединений.

Зависимость кислотно-основных свойств оксидов от положения элемента в периодической системе и его степени окисления.

Слева направо по периоду у элементов происходит ослабление металлических свойств, и усиление неметаллических. Основные свойства оксидов ослабевают, а кислотные свойства оксидов усиливаются.

По главным подгруппам неметаллические свойства элементов ослабевают, а металлические усиливаются, поэтому сверху вниз по главной группе возрастают основные свойства оксидов, а кислотные ослабевают.

Если один и тот же элемент образует несколько оксидов с разными степенями окисления, то чем выше степень окисления элемента в оксиде, тем выше его кислотные свойства.

Например, Pb +2 O – основной оксид, Pb +4 O 2 – амфотерный. Cr +2 O - основный оксид, Cr 2 +3 O 3 – амфотерный, Cr +6 O 3 – кислотный.

Характер изменения свойств оснований в зависимости от положения металла в периодической системе и его степени окисления.

По периоду слева направо наблюдается постепенное ослабление основных свойств гидроксидов. Например, Mg(OH) 2 более слабое основание, чем NaOH, но более сильное основание, чем Al(OH) 3 .

По главным группам сверху вниз сила оснований возрастает. Так, Са(ОН) 2 более сильное основание, чем Mg(OH) 2 , но Mg(OH) 2 более сильное основание, чем Ве(ОН) 2 .

Если металл образует несколько гидроксидов, находясь в различной степени окисления, то чем выше степень окисления металла, тем более слабыми основными свойствами обладает гидроксид. Так, Cr(OH) 3 более слабое основание, чем Cr(OH) 2 .

Зависимость силы кислот от положения элемента в периодической системе и его степени окисления.

По периоду для кислородосодержащих кислот слева направо возрастает сила кислот. Так, Н 3 РО 4 более сильная, чем Н 2 SiO 3 ; в свою очередь, H 2 SO 4 более сильная, чем Н 3 РО 4 .

По группе кислородсодержащих кислот сверху вниз сила кислот уменьшается. Так, угольная кислота (Н 2 СО 3) более сильная, чем кремневая (Н 2 SiO 3).

Чем выше степень окисления кислотообразующего элемента, тем сильнее кислота: серная кислота (H 2 S +6 O 4) сильнее, чем сернистая (H 2 S +4 O 3).

Сила бескислородных кислот в главных подгруппах с ростом атомного номера элемента возрастает: HF → HCl → HBr → HI

H 2 S → H 2 Se → H 2 Te

СИЛА КИСЛОТ РАСТЕТ

По периоду слева направо сила бескислородных кислот возрастает. Так HCl более сильная кислота, чем H 2 S, а HBr - чем H 2 Se.

Учение о химической связи – центральный вопрос современной химии. Без него нельзя понять причин многообразия химических соединений, механизма их образования, строения и реакционной способности.

Образование молекул из атомов приводит к выигрышу энергии, так как в обычных условиях молекулярное состояние устойчивее, чем атомное. Учение о строении атомов объясняет механизм образования молекул, а также природу химической связи. У атомов на внешнем энергетическом уровне может быть от одного до восьми электронов. Если на внешнем уровне содержится максимальное число электронов, которое он может вместить, то такой уровень называют завершенным. Завершенные уровни характеризуются большой прочностью. Такие уровни имеют атомы благородных газов. Атомы других элементов имеют незавершенные энергетические уровни и в процессе химического взаимодействия завершают их.

Химическая связь – это совокупность сил, действующих между атомами или группой атомов. Химическая связь осуществляется валентными электронами. По современным представлениям химическая связь имеет электронную природу, но осуществляется она по-разному. Поэтому различают три основных типа химической связи: ковалентную, ионную, металлическую . Между молекулами возникает водородная связь , и происходят вандерваальсовые взаимодействия .

К основным характеристикам химической связи, относятся:

Длина связи – это межъядерное расстояние между химически связанными атомами. Она зависит от природы взаимодействующих атомов и от кратности связи. С увеличением кратности длина связи уменьшается, а, следовательно, увеличивается ее прочность.

Кратность связи – определяется числом электронных пар, связывающих два атома. С увеличением кратности энергия связи возрастает.

Угол связи – угол между воображаемыми прямыми проходящими через ядра двух химически взаимосвязанных соседних атомов.

Энергия связи (Е СВ ) – это энергия, которая выделяется при образовании данной связи и затрачивается на ее разрыв (кДж/моль).

Химическая связь, образованная путем обобществления пары электронов двумя атомами, называется ковалентной.

Объяснение химической связи возникновением общих электронных пар между атомами легло в основу спиновой теории валентности, инструментом которой является метод валентных связей (МВС) , открытый Льюисом в 1916 году.

Основные принципы образования химической связи по МВС:

1. Химическая связь образуется за счет валентных (неспаренных) электронов.

2. Электроны с антипараллельными спинами, принадлежащие двум различным атомам, становятся общими.

3. Химическая связь образуется только в том случае, если при сближении двух и более атомов полная энергия системы понижается.

4. Основные силы, действующие в молекуле, имеют электрическое, кулоновское происхождение.

5. Связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.

Существует два механизма образования ковалентной связи.

Обменный механизм . Связь образована путем обобществления валентных электронов двух нейтральных атомов. Каждый атом дает по одному неспаренному электрону в общую электронную пару (рис. 9).

Рис.9. Обменный механизм образования ковалентной связи:

а – не полярной; б ‑ полярной.

Донорно-акцепторный механизм . Один атом (донор) предоставляет электронную пару, а другой атом (акцептор) предоставляет для этой пары свободную орбиталь (рис. 10).

Соединения образованные по донорно-акцепторному механизму относятся к комплексным соединениям.

донор акцептор

Рис.10. Донорно-акцепторный механизм образования ковалентной связи.

Ковалентная связь имеет определенные характеристики.

Насыщаемость – свойство атомов образовывать строго определенное число ковалентных связей. Благодаря насыщаемости связей молекулы имеют определенный состав.

Направленность – т. е. связь образуется в направлении максимального перекрытия электронных облаков. Относительно линии соединяющей центры атомов образующих связь различают: σ и π (рис. 11).

σ связьобразована перекрыванием АО по линии соединяющей центры взаимодействующих атомов,

Рис. 11. Схема перекрывания орбиталей при образовании δ-связей (а, б, в) и π-связей (г)

π связь- это связь возникающая в направлении оси перпендикулярной прямой соединяющей ядра атома.

Направленность связи обусловливает пространственную структуру молекул, то есть их геометрическую форму.

Гибридизация ‑ это изменение формы некоторых орбиталей при образовании ковалентной связи для достижения более эффективного перекрывания орбиталей. Химическая связь, образуемая с участием электронов гибридных орбиталей, более прочная, чем связь с участием электронов негибридных s- и р-орбиталей, так как происходит большее перекрывание.

Различают следующие виды гибридизации (рис. 12):

s p – гибридизация ‑ одна s- орбиталь и одна p- орбиталь превращаются в две одинаковые "гибридные" орбитали, угол между осями которых равен 180°. Молекулы, в которых осуществляется sp- гибридизация, имеют линейную геометрию (BeCl 2).

s p 2 гибридизация . ‑одна s- орбиталь и две p- орбитали превращаются в три одинаковые "гибридные" орбитали, угол между осями которых равен 120°. Молекулы, в которых осуществляется sp 2 - гибридизация, имеют плоскую геометрию. (BF 3 , AlCl 3).

s p 3 гибридизация ‑ одна s- орбиталь и три p- орбитали превращаются в четыре одинаковые "гибридные" орбитали, угол между осями которых равен 109°28". Молекулы, в которых осуществляется sp 3 - гибридизация, имеют тетраэдрическую геометрию (CH 4 , NH 3).

Рис. 12. Виды гибридизаций валентных орбиталей: а ‑ sp -гибридизация валентных орбиталей; б – sp 2 –гибридизация валентных орбиталей; в ‑ sp 3 –гибридизация валентных орбиталей

Полярность - если электронная плотность расположена симметрично между атомами, ковалентная связь называется неполярной (рис.9.а), если электронная плотность смещена в сторону одного из атомов, то ковалентная связь называется полярной (рис.9.б). Полярность связи тем больше, чем больше разность электроотрицательностей атомов, молекула называется диполем.

Диполь – это система, в которой имеется два электрических заряда, равных по величине, но противоположных по знаку, расположенных на некотором расстоянии друг от друга.

Произведение длины диполя (l), т.е. расстояния между полюсами в молекуле, на величину заряда электрона (ē) называется дипольным моментом (μ).

Дипольный момент молекулы служит количественной мерой ее полярности. Дипольные моменты молекул измеряют в дебаях (D). 1D = 3,33 · 10 -30 Кл·м.

Чем больше длина диполя (дипольный момент), тем больше полярность молекулы (, и др.).

Дипольный момент направлен от положительного конца диполя к отрицательному. Поэтому дипольный момент многоатомной молекулы следует рассматривать как векторную сумму дипольных моментов связей: он зависит не только от полярности каждой связи, ни и от взаимного расположения этих связей.

Поляризуемость – способность молекулы становиться полярной. Данное явление происходит под действием внешнего электрического поля или под влиянием другой молекулы, являющейся партнером по реакции.

Существует обратная зависимость между полярностью и поляризуемостью ковалентной связи: чем больше полярность связи, тем меньше остается возможности для их дальнейшего смещения под действием внешних сил.

Для квантово-механического описания химической связи и строения молекул применяют еще один метод – метод молекулярных орбиталей (ММО). Данный метод исходит из предположения, что состояние электронов в молекуле может быть описано как совокупность молекулярных электронных орбиталей, причем каждой молекулярной орбитали (МО) соответствует определенный набор молекулярных квантовых чисел.

Основные положения метода МО:

1. Молекулярная орбиталь (МО) является аналогом атомной орбитали (АО): подобно тому, как электрны в атомах располагаются на АО, общие электроны в молекуле располагаются на МО.

2. Для образования МО атомные орбитали должны обладать приблизительно одинаковой энергией и симметрией относительно направления взаимодействия.

3. Число МО равно общему числу АО, из которых комбинируются МО.

4. Если энергия МО оказывается ниже энергии исходных АО, то такие МО называются связывающие , а если выше энергии исходных АО, то – разрыхляющие МО (рис. 13).

5. Электроны заполняют МО, как и АО в порядке возрастания энергии, при этом соблюдается принцип Паули и правило Гунда.

6. МО двухатомных молекул первого периода и второго (до N 2) располагают в ряд:

Рис. 13. Энергетическая диаграмма образования МО из двух АО

σ связ 1s < σ разр 1s < σ связ 2s < σ разр 2s < π связ y = π связ z < σ связ 2 p x < π разр y = π разр z < σ разр 2 p x .

МО двухатомных молекул конца второго периода по возрастанию энергии располагают: σ связ 1s < σ разр 1s < σ связ 2s < σ разр 2s < σ связ 2 p x < π связ y = π связ z < π разр y = π разр z < σ разр 2 p x .

7. В методе МО вместо кратности связи вводится понятие порядок связи (n) – полуразность числа связывающих и числа разрыхляющих электронов:

(59)

Порядок связи может быть равен нулю, целому или дробному положительному числу. При n = 0 молекула не образуется.

8. Если на МО имеются неспаренные электроны, молекула парамагнитна , т.е. обладает магнитными свойствами. Если все электроны спарены – диамагнитна , т.е. не обладает магнитными свойствами.

ММО по сравнению с МВС позволяет получить реальные представления о химической связи и свойствах различных частиц (молекул, ионов). Электронные конфигурации молекул рассмотрим на примере образования химической связи двухатомной молекулы водорода, представленного через электронную формулу: 2Н → H 2 [(σ связ 1s) 2 ].

Как видно (рис. 14), из двух s-орбиталей образуется две МО: одна связывающая и одна разрыхляющая. При этом МО принадлежат к σ-типу: они образованы взаимодействием s-орбиталей. Порядок связи:

Характеризуя ММО и МВС, необходимо заметить, что оба квантово-механических подхода к описанию химической связи – приближены. ММО придает преувеличенное значение делокализации электрона в молекуле и основывается на одноэлектронных волновых функциях – молекулярных орбиталях. МВС преувеличивает роль локализации электронной плотности и основывается на том, что элементарная связь осуществляется только парой электронов между двумя атомами.

Рис. 14. Энергетическая диаграмма образования МО водорода из двух АО

Сравнивая МВС и ММО, следует отметить, что достоинством первого является его наглядность: насыщаемость связи объясняется как максимальная ковалентность, направленность вытекает из направленности атомных и гибридных орбиталей; дипольный момент молекулы складывается из дипольных моментов связей, разности ОЭО атомов, образующих молекулу, и наличия неподеленных электронных пар.

Однако существование некоторых соединений невозможно объяснить с позиции МВС. Это электрон-дефицитные соединения (Н 2 +) и соединения благородных газов. Их строение легко объясняет ММО. Устойчивость молекулярных ионов и атомов в сравнении с молекулами легко предсказывается с позиции ММО. И, наконец, магнетизм и окраска вещества также легко объясняются ММО.

Количественные расчеты в ММО, несмотря на свою громоздкость, все же гораздо проще, чем в МВС. Поэтому в настоящее время в квантовой химии МВС почти не применяется. В тоже время качественно выводы МВС гораздо нагляднее и шире используются экспериментаторами, чем ММО. Основанием для этого служит тот факт, что реально в молекуле вероятность пребывания данного электрона между связанными атомами гораздо больше, чем на других атомах, хотя и там она не равна нулю. В конечном счете, выбор метода определяется объектом исследования и поставленной задачей.

Ионная (электровалентная) связь -это сильнополярная ковалентная связь. В ее основе лежит электростатическое взаимодействие ионов. Согласно ей, атомы элементов с числом электронов в наружном слое меньше восьми присоединяют или теряют такое число электронов, которое делает наружный электронный слой таким, как у атома ближайшего инертного газа.

Атом, потерявший электроны, превращается в положительно заряженный ион (катион). Атом, присоединивший электроны, становится отрицательно заряженным ионом (анион). Разноименно заряженные ионы притягиваются друг к другу (рис. 15).

Возникновение ионной связи имеет место только в том случае, если элементы, атомы которых реагируют между собой, обладают резко отличными значениями энергии ионизации и сродства к электрону. Ионных соединений немного. Они обладают основными свойствами: в расплавленном состоянии обладают электропроводностью, в воде легко диссоциируют на ионы (растворяются), имеют высокую температуру плавления и кипения.

Рис. 15. Образование хлорида натрия из простых веществ

Ионная связь характеризуется следующими показателями:

Ненаправленность . Ионы – заряженные шары, их силовые поля равномерно распределяются во всех направлениях в пространстве, поэтому они притягивают противоположный по знаку ион в любом направлении.

Ненасыщаемость. Взаимодействие двух ионов не может привести к полной взаимной компенсации их силового поля. Поэтому у них сохраняется способность притягивать ионы противоположного знака и по другим направлениям. Так, ионный кристалл () является гигантской молекулой из ионов. Из отдельных молекул ионные соединения состоят только в парообразном состоянии.

Металлическая связь основана на обобществлении валентных электронов, принадлежащих не двум, а практически всем атомам металла в кристалле.

В металлах валентных электронов намного меньше, чем свободных орбиталей. Это создает условия для свободного перемещения электронов по орбиталям разных атомов металла. Внутри металла происходит непрерывное хаотичное движение электронов от атома к атому, то есть электроны становятся общими. При создании разности потенциалов происходит согласованное движение электронов – это объясняет электрическую проводимость данных веществ. В металлах небольшое число электронов одновременно связывает множество атомных ядер – эта особенность называется делокализацией. Данный тип связи характерен для веществ, находящихся в твердом или жидком состоянии.

Водородная связь одна из разновидностей взаимодействия между полярными молекулами, бывает внутри- и межмолекулярной (рис.16).

Рис.16. Образование водородной связи: а – внутримолекулярной;

б – межмолекулярной.

Она образуется между электроотрицательными атомами одной молекулы и атомами водорода другой, типа Н-Х (Х – это F , O , N , Cl , Br , I ) за счет сил электростатического притяжения. Связь между водородом и одним из этих атомов характеризуется достаточной полярностью, поскольку связующее электронное облако смещено в сторону более электроотрицательного атома. Водород в данном случае расположен на положительном конце диполя. Два и более таких диполя взаимодействуют между собой так, ядро атома водорода одной молекулы (положительный конец диполя) притягивается неподеленной электронной парой второй молекулы. Данная связь проявляется в газах, жидкостях и твердых телах. Она относительно прочна. Понижение температуры способствует образованию водородной связи. Наличие водородной связи обусловливает повышение устойчивости молекул вещества, а также повышению их температуры кипения и плавления. Образование водородных связей играет важную роль, как в химических, так и в биологических системах.

Разные агрегатные состояния веществ свидетельствует о том, что между частицами (атомами, ионами, молекулами) имеет место взаимодействие, обусловленное ван-дер-ваальсовыми силами притяжения. Наиболее важной и отличительной чертой этих сил является их универсальность, так как они действуют без исключения между всеми атомами и молекулами.

Межмолекулярные силы (Ван-дер-ваальсовые силы) взаимодействие между молекулами, в результате которого вещество переходит в жидкое или твердое состояние. Межмолекулярные силы имеют электрическую природу. Они обусловлены полярностью и поляризуемостью молекул. Различают три типа межмолекулярного взаимодействия: дипольное, индукционное, дисперсионное (рис. 17).

При ориентационном (дипольном) . взаимодействии полярные молекулы, сближаясь, ориентируются относительно друг друга противоположно заряженными концами диполей. Чем более полярны молекулы, тем прочнее взаимодействие. При повышении температуры ориентационное взаимодействие уменьшается, так как тепловое движение молекул нарушает ориентацию.

При индуцированным взаимодействии происходит взаимное притяжение полярных и неполярных молекул. Постоянный диполь полярной молекулы создает в неполярной временный диполь (за счет деформации электронного облака), благодаря которому и происходит взаимодействие. Оно не зависит от температуры, зависит от напряженности электрического поля полярной молекулы.

Сближение двух неполярных молекул приводит к дисперсионному взаимодействию. Оно возникает вследствие вращения электронов и колебательного движения атомных ядер, в атоме возникают небольшие мгновенные деформации электронного облака, создающие асимметрию в распределении зарядов, возникают мгновенные диполи. На дисперсионном взаимодействии основан процесс сжижения благородных газов и двухатомных элементарных газов.

Рис. 17. Межмолекулярные взаимодействия молекул:

а – ориентационное; б – индукционное; в – дисперсионное

В молекулах, образованных более чем двумя атомами различных элементов существуют разные типы связей.

Энергия межмолекулярного взаимодействия намного меньше энергии химических связей (8-47 кДж/моль), она быстро уменьшается при увеличении расстояния между молекулами, однако, ее достаточно для стягивания молекул веществ в агрегаты. Ван-дер-ваальсовые силы проявляются при переходе вещества из газообразного состояния в жидкое, при кристаллизации сжиженных газов, адсорбции и других процессов.

Вещество может существовать в трех агрегатных состояниях: газообразном, жидком и твердом. Плазму часто называют четвертым агрегатным состоянием. Свойства веществ зависят от агрегатного состояния (табл. 32).

Электроотрицательность (ЭО) — это способность атомов притягивать электроны при связывании с другими атомами.

Электроотрицательность зависит от расстояния между ядром и валентными электронами, и от того, насколько валентная оболочка близка к завершенной. Чем меньше радиус атома и чем больше валентных электронов, тем выше его ЭО.

Фтор является самым электроотрицательным элементом. Во-первых, он имеет на валентной оболочке 7 электронов (до октета недостает всего 1-го электрона) и, во-вторых, эта валентная оболочка (…2s 2 2p 5) расположена близко к ядру.

Менее всего электроотрицательны атомы щелочных и щелочноземельных металлов. Они имеют большие радиусы и их внешние электронные оболочки далеки от завершения. Им гораздо проще отдать свои валентные электроны другому атому (тогда предвнешняя оболочка станет завершенной), чем «добирать» электроны.

Электроотрицательность можно выразить количественно и выстроить элементы в ряд по ее возрастанию. Наиболее часто используют шкалу электроотрицательностей, предложенную американским химиком Л. Полингом.

Разность электроотрицательностей элементов в соединении (ΔX ) позволит судить о типе химической связи. Если величина Δ X = 0 – связь ковалентная неполярная .

При разности электроотрицательностей до 2,0 связь называют ковалентной полярной , например: связь H-F в молекуле фтороводорода HF: Δ X = (3,98 — 2,20) = 1,78

Связи с разностью электроотрицательностей больше 2,0 считаются ионными . Например: связь Na-Cl в соединении NaCl: Δ X = (3,16 — 0,93) = 2,23.

Степень окисления

Степень окисления (СО) — это условный заряд атома в молекуле, вычисленный в предположении, что молекула состоит из ионов и в целом электронейтральна.


При образовании ионной связи происходит переход электрона от менее электроотрицательного атома к более электроотрицательному, атомы теряет свою электронейтральность, превращается в ионы. возникают целочисленные заряды. При образовании ковалентной полярной связи электрон переходит не полностью, а частично, поэтому возникают частичные заряды (на рисунке ниже HCl). Представим, что электрон перешел полностью от атома водорода к хлору, и на водороде возник целый положительный заряд +1, а на хлоре -1. такие условные заряды и называют степенью окисления.


На этом рисунке изображены степени окисления, характерные для первых 20 элементов.
Обратите внимание. Высшая СО как правило равна номеру группы в таблице Менделеева. У металлов главных подгрупп – одна характерная СО, у неметаллов, как правило, наблюдается разброс СО. Поэтому неметаллы образуют большое количество соединений и обладают более «разнообразными» свойствами, по сравнению с металлами.

Примеры определения степени окисления

Определим степени окисления хлора в соединениях:

Те правила, которые мы рассмотрели не всегда позволяют рассчитать СО всех элементов, как например в данной молекуле аминопропана.


Здесь удобно пользоваться следующим приемом:

1)Изображаем структурную формулу молекулы, черточка – это связь, пара электронов.

2) Черточку превращаем в стрелку, направленную к более ЭО атому. Эта стрелка символизирует переход электрона к атому. Если связаны два одинаковых атома, оставляем черту как есть – нет перехода электронов.

3) Считаем сколько электронов «пришло» и «ушло».

Например, посчитаем заряд первого атома углерода. Три стрелки направленны к атому, значит, 3 электрона пришло, заряд -3.

Второй атом углерода: водород отдал ему электрон, а азот забрал один электрон. Заряд не поменялся, равен нулю. И т.д.

Валентность

Вале́нтность (от лат. valēns «имеющий силу») - способность атомов образовывать определённое число химических связей с атомами других элементов.

В основном, под валентностью понимается способность атомов к образованию определённого числа ковалентных связей . Если в атоме имеется n неспаренных электронов и m неподелённых электронных пар, то этот атом может образовывать n + m ковалентных связей с другими атомами, т.е. его валентность будет равна n + m . При оценке максимальной валентности следует исходить из электронной конфигурации «возбуждённого» состояния. Например, максимальная валентность атома бериллия, бора и азота равна 4 (например, в Be(OH) 4 2- , BF 4 — и NH 4 +), фосфора - 5 (PCl 5), серы - 6 (H 2 SO 4), хлора - 7 (Cl 2 O 7).

В ряде случаев, валентность может численно совпадать со степенью окисления, но ни коим образом они не тождественны друг другу. Например, в молекулах N 2 и CO реализуется тройная связь (то есть валентность каждого атома равна 3), однако степень окисления азота равна 0, углерода +2, кислорода −2.



Классификация химических связей

Глава 3. Химическая связь

Вопросы для самопроверки

1. Что такое преобразование суждения?

2. Чем отличается обращение суждения от превращения суждения?

3. Каким принципам подчиняется истинность (ложность) суждения?

4. Какую функцию выполняет таблица истинности (ложности) суждения?

Упражнения

Преобразуйте суждения, используя правила превращения, обращения и противопоставление предикату.

1) Некоторые студенты неуспевающие. 2) Все лесные делянки зачищены. 3) Ни одна буровая не простаивала в этом году. 4) Среди студентов есть спортсмены. 5) Трудности его не страшат.

Пример: Все металлы – электропроводны. Ни один металл не является неэлектропроводным; (превращение).

Все студенты – учащиеся. Некоторые учащиеся – студенты; (обращение).

Все студенты – учащиеся. Некоторые учащиеся – не являются студентами; (противопоставление предикату).

Одним из наиболее важных вопросов химии является вопрос химической связи, требующий объяснения причин и выявления закономерностей образования связей между атомами, ионами, молекулами на основе теории строения атома и периодического закона Д.И.Менделеева, а также характеристики этих связей посредством интерпретации физических и химических свойств веществ. В настоящее время для изучения химической связи в основном используют два метода:
1) валентных связей;
2) молекулярных орбиталей.
В рамках первого метода рассматривают индивидуальные атомы, вступающие во взаимодействие, исходя из принципа завершенности электронной оболочки (правило октета). Ковалентная связь с точки зрения метода валентных связей образуется за счет обобществления электронной пары.
Простой метод валентных связей для химика наиболее понятен, удобен и нагляден, лучше всего отвечает целям первичного обучения. Недостаток метода валентных связей состоит в том, что в его рамках нельзя объяснить некоторые экспериментальные данные.
Большей эффективностью обладает метод молекулярных орбиталей, в котором рассматриваются электроны, находящиеся в поле притяжения, созданном всеми атомными ядрами молекулы. С точки зрения метода молекулярных орбиталей в молекуле нет атомов как таковых, а есть взаимно отталкивающиеся ядра и взаимодействующие с ними и между собой электроны. Метод молекулярных орбиталей позволяет полнее объяснить экспериментальные данные.
При характеристике химической связи обычно пользуются такими понятиями, как «валентность», «степень окисления» и «кратность связи».
Валентность – способность атома химического элемента к образованию связи с другими атомами. За величину валентности принимают для ионных соединений количество отданных или принятых электронов. Для ковалентных соединений валентность равна числу обобществленных электронных пар.
Степень окисления – это условный заряд, который был бы на атоме в том случае, когда все полярные ковалентные связи были бы ионными.
Кратность связи между данными атомами равна числу их обобществленных электронных пар.
Все связи, рассматриваемые в химии, можно разделить на связи, приводящие к образованию новых веществ, и межмолекулярные связи .
Связи, приводящие к образованию новых веществ, возникают в результате спаривания электронов. Спаренные электроны находятся в поле притяжения всех ядер молекул. Такое перераспределение электронной плотности дает выигрыш в энергии в сравнении с несвязанными атомами. Именно наличием этого выигрыша и обусловлено образование химической связи. В зависимости от способа перераспределения электронов выделяют связи ковалентные, ионные и металлические . По наличию или отсутствию поляризации ковалентные связи делят на полярные – между атомами разных элементов – и неполярные – между атомами одного элемента. По способу образования ковалентные связи разделяют на обычные , донорно-акцепторные и дативные .



Характеристику связи между атомами можно давать на основе электроотрицательности.
Электроотрицательность – способность атома, связанного с другим атомом, притягивать к себе электронное облако, вызывая тем самым поляризацию связи. Используют различные количественные оценки электроотрицательности атома, например полусумму его сродства к электрону и потенциала ионизации (метод Малликена) (табл. 3.1).

Таблица 3.1

Относительные электроотрицательности атомов в виде
полусуммы сродства к электрону и потенциала ионизации

Период Группы элементов
I II III IV V VI VII VIII
Н 2,1 He
Li 0,97 Be 1,47 B 2,01 C 2,50 N 3,07 O 3,50 F 4,10 Ne
Na 1,01 Mg 1,23 Al 1,47 Si 1,47 P 2,1 S 2,6 Cl 2,83 Ar
K 0,91 Ca 1,04 Sc 1,20 Ti 1,32 V 1,45 Cr 1,56 Mn 1,60 Fe 1,64 Co 1,70 Ni 1,75
Cu 1,75 Rb 0,89 Zn 1,66 Sr 0,99 Ga 1,82 Ge 2,02 As 2,20 Se 2,48 Br 2,74 Kr

Существуют и другие подходы к определению электроотрицательности. Так, первой и наиболее известной является шкала Л.Полинга, полученная из термохимических данных и предложенная в 1932 г. За начало отсчета в этой шкале произвольно принята величина электроотрицательности наиболее электроотрицательного элемента фтора, (F) = 4,0 (табл. 3.2).

Таблица 3.2

Электроотрицательности атомов
в стабильных степенях окисления по Полингу

Период Группы элементов
I II III IV V VI VII VIII
Н 2,1 He
Li 1,0 Be 1,5 B 2,0 C 2,5 N 3,0 O 3,5 F 4,0 Ne
Na 0,9 Mg 1,2 Al 1,5 Si 1,8 P 2,1 S 2,5 Cl 3,0 Ar
K 0,8 Ca 1,0 Sc 1,3 Ti 1,5 V 1,6 Cr 1,6 Mn 1,5 Fe 1,8 Co 1,8 Ni 1,8
Cu 1,9 Rb 0,8 Zn 1,6 Sr 1,0 Ga 1,6 Ge 1,8 As 2,0 Se 2,4 Br 2,8 Kr

Электроотрицательность элементов периодической системы, как правило, последовательно возрастает слева направо в каждом периоде. В пределах каждой группы, за несколькими исключениями, электроотрицательность последовательно убывает сверху вниз. С помощью электроотрицательностей можно охарактеризовать химическую связь. Чем больше разница электроотрицательностей атомов, образующих химическую связь, тем больше степень ионности этой связи. Связи при разности электроотрицательностей атомов больше 2,1 могут считаться чисто ионными (по данным других научных источников, 50%-й ионности связи соответствует разность электроотрицательностей атомов, равная 1,7).
Связи с меньшей разностью электроотрицательностей атомов относят к полярным ковалентным связям. Чем меньше разность электроотрицательностей атомов, образующих химическую связь, тем меньше степень ионности этой связи. Нулевая разность электроотрицательностей атомов указывает на отсутствие ионного характера у образованной ими связи, т. е. на ее сугубую ковалентность.
Электроотрицательность атома, по-видимому, зависит и от степени его окисления. Так, для трех оксидов хрома:, , – наблюдается изменение их характера от основного (CrO) через амфотерный (Сr 2 O 3) до кислотного (СrO 3). Один и тот же элемент – хром – в СrO ведет себя как типичный металл, в Сr 2 O 3 – как амфотерный металл, а в СrO 3 – как типичный неметалл.
При составлении химических формул соединений следует учитывать, что более электроотрицательные элементы помещаются правее, например, H 2 S, OF 2 , SCl 2 O, Br 3 N, SiBr 2 F 2 .



Рассказать друзьям