Из чего состоит внутренняя энергия тела. Способы изменения внутренней энергии тела

💖 Нравится? Поделись с друзьями ссылкой

Мы знаем, что внутреннюю энергию тела можно изменить двумя способами - путем совершения работы и путем теплообмена. При осуществлении первого из этих способов внутренняя энергия тела изменяется на величину совершенной работы А, а при осуществлении второго из них - на величину, равную количеству переданной теплоты Q.

Обозначим начальную внутреннюю энергию тела через U 1 , а конечную (после того, как ее изменили) - через U 2 . Тогда изменение внутренней энергии тела будет равно разности U 2 -U 1 . Изменение любой физической величины в физике принято обозначать греческой буквой А (дельта) Поэтому мы можем записать:

ΔU - изменение внутренней энергии
U = U 2 – U 1

Изменение внутренней энергии может выражаться как положительной, так и отрицательной величиной:
1) если внутренняя энергия тела увеличивается, то U 2 > U 1 и, следовательно, ΔU > 0;
2) если внутренняя энергия тела уменьшается, то U 2 < U 1 и, следовательно, ΔU < 0.

В зависимости от того, каким путем (путем совершения над телом работы или путем теплообмена) изменялась внутренняя энергия тела, ее изменение можно рассчитывать двумя способами:

ΔU = A - при совершении работы (33.1)
ΔU = Q - при теплообмене (33.2)

Применяя уравнение (33.1), следует помнить, что в его правой части фигурирует работа внешних сил, действующих на тело. Работа самого тела A тела отличается от нее знаком:

A тела = –A

Количество теплоты Q также может быть как положительным, так и отрицательным:
1) если внутренняя энергия тела увеличивается в процессе теплообмена, то Q>О (тело получает количество теплоты);
2) если внутренняя энергия тела уменьшается в процессе теплообмена, то Q<0 (тело отдает количество теплоты).

В общем случае внутренняя энергия тела (или системы тел) может изменяться сразу двумя способами - и путем совершения работы, и путем теплообмена. Тогда для расчета изменения внутренней энергии применяют уравнение

ΔU = A + Q (33.3)

Согласно этому уравнению, изменение внутренней энергии системы равно сумме работы внешних сил и количества теплоты, полученного системой.

1. Как обозначаются внутренняя энергия тела и изменение внутренней энергии тела? 2. В каком случае изменение внутренней энергии тела положительно и в каком отрицательно? 3. Какой знак имеет: а) количество теплоты, полученное телом; б) количество теплоты, отданное телом? Почему? 4. Напишите формулу, по которой рассчитывается изменение внутренней энергии тела при теплообмене. 5. Напишите формулу, по которой рассчитывается изменение внутренней энергии тела при совершении над ним работы. 6. По какой формуле рассчитывается изменение внутренней энергии в общем случае?

Внутренняя энергия тела не может являться постоянной величиной. Она может изменяться у любого тела. Если повысить температуру тела, то его внутренняя энергия увеличится, т.к. увеличится средняя скорость движения молекул. Таким образом, увеличивается кинетическая энергия молекул тела. И, наоборот, при понижении температуры, внутренняя энергия тела уменьшается.

Можно сделать вывод: внутренняя энергия тела изменяется, если меняется скорость движения молекул. Попытаемся определить, каким методом можно увеличить или уменьшить скорость передвижения молекул. Рассмотрим следующий опыт. Закрепим на подставке латунную трубку с тонкими стенками. Наполним трубку эфиром и закроем его пробкой. Затем обвяжем его веревкой и начнем интенсивно двигать веревкой в разные стороны. Спустя определенное время, эфир закипит, и сила пара вытолкнет пробку. Опыт демонстрирует, что внутренняя энергия вещества (эфира) возросла: ведь он изменил свою температуру, при этом закипев.

Увеличение внутренней энергии произошло за счет совершения работы при натирании трубкой веревкой.

Как мы знаем, нагревание тел может происходить и при ударах, сгибании или разгибании, говоря проще, при деформации. Во всех приведенных примерах, внутренняя энергия тела возрастает.

Таким образом, внутреннюю энергию тела можно увеличить, совершая над телом работу.

Если же работу выполняет само тело, его внутренняя энергия уменьшается.

Рассмотрим еще один опыт.

В стеклянный сосуд, у которого толстые стенки и он закрыт пробкой, накачаем воздух через специально проделанное отверстие в ней.

Спустя некоторое время пробка вылетит из сосуда. В тот момент, когда пробка вылетает из сосуда, мы сможем увидеть образование тумана. Следовательно, его образование обозначает, что воздух в сосуде стал холодным. Сжатый воздух, который находится в сосуде, при выталкивании пробки наружу совершает определенную работу. Данную работу он выполняет за счет своей внутренней энергии, которая при этом сокращается. Делать выводы об уменьшении внутренней энергии можно исходя из охлаждения воздуха в сосуде. Таким образом, внутреннюю энергию тела можно изменять путем совершения определенной работы.

Однако, внутреннюю энергию возможно изменить и иным способом, без совершения работы. Рассмотрим пример, вода в чайнике, который стоит на плите закипает. Воздух, а также другие предметы в помещении нагреваются от радиатора центрального направления. В подобных случаях, внутренняя энергия увеличивается, т.к. увеличивается температура тел. Но работа при этом не совершается. Значит, делаем вывод, изменение внутренней энергии может произойти не из-за совершения определенной работы.

Рассмотрим еще один пример.

В стакан с водой опустим металлическую спицу. Кинетическая энергия молекул горячей воды, больше кинетической энергии частиц холодного металла. Молекулы горячей воды будут передавать часть своей кинетической энергии частицам холодного металла. Таким образом, энергия молекул воды будет определенным образом уменьшаться, тем временем как энергия частиц металла будет повышаться. Температуры воды понизится, а температуры спицы не спеша, будет увеличиваться. В дальнейшем, разница между температурой спицы и воды исчезнет. За счет этого опыта мы увидели изменение внутренней энергии различных тел. Делаем вывод: внутренняя энергия различных тел изменяется за счет теплопередачи.

Процесс преобразования внутренней энергии без совершения определенной работы над телом или самим телом называется теплопередачей.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

ВНУТРЕННЯЯ ЭНЕРГИЯ термодинамич. ф-ция состояния системы, ее энергия, определяемая внутр. состоянием. Внутренняя энергия складывается в осн. из кинетич. энергии движения частиц ( , ) и энергии взаимод. между ними (внутри- и межмолекулярной). На внутреннюю энергию влияет изменение внутр. состояния системы под действием внеш. поля; во внутреннюю энергию входит, в частности, энергия, связанная с во внеш. электрич. поле и намагничиванием во внеш. магн. поле. Кинетич. энергия системы как целого и потенциальная энергия, обусловленная пространств. расположением системы, во внутреннюю энергию не включаются. В определяется лишь изменение внутренней энергии в разл. процессах. Поэтому внутреннюю энергию задают с точностью до нек-рого постоянного слагаемого, зависящего от энергии, принятой за нуль отсчета.

Внутренняя энергия U как ф-ция состояния вводится , согласно к-рому разность между теплотой Q, переданной системе, и работой W, совершаемой системой, зависит только от начального и конечного состояний системы и не зависит от пути перехода, т.е. представляет изменение ф-ции состояния

где U 1 и U 2 - внутренняя энергия системы в начальном и конечном состояниях соответственно. Ур-ние (1) выражает в применении к термодинамич. процессам, т. е. процессам, в к-рых происходит передача теплоты. Для циклич. процесса, возвращающего систему в начальное состояние, . В изохорных процессах, т.е. процессах при постоянном объеме, система не совершает работы за счет расширения, W=0 и теплота, переданная системе, равна приращению внутренней энергии: Q v =. Для адиабатич. процессов, когда Q = 0, = - W.

Внутренняя энергия системы как ф-ция ее S, объема V и числа m i i-того компонента представляет собой . Это является следствием первого и и выражается соотношением:

"

где Т - абс. т-ра, р-давление,-хим. потенциал i-того компонента. Знак равенства относится к равновесным процессам, знак неравенства-к неравновесным. Для системы с заданными значениями S, V, m i ( в жесткой адиабатной оболочке) внутренняя энергия при минимальна. Убыль внутренней энергии в обратимых процессах при постоянных V и S равна макс. полезной работе (см. ).

Зависимость внутренней энергии равновесной системы от т-ры и объема U =f(T, V)наз. калорическим . Производная внутренней энергии по т-ре при постоянном объеме равна изохорной :

Внутренняя энергия от объема не зависит и определяется только т-рой.

Экспериментально определяют значение внутренней энергии в-ва, отсчитываемое от ее значения при абс. нуле т-ры. Определение внутренней энергии требует данных о С V (Т), теплотах , об ур-нии состояния. Изменение внутренней энергии при хим. р-циях (в частности, стандартная внутренняя энергия образования в-ва) определяется по данным о тепловых эффектах р-ций, а также по спектральным данным. Теоретич. расчет внутренней энергии осуществляется методами статистич. , к-рая определяет внутреннюю энергию как среднюю энергию системы в заданных условиях изоляции (напр., при заданных Т, V, m i). Внутренняя энергия одноатомного складывается из средней энергии поступат. движения и средней энергии возбужденных электронных состояний; для двух- и многоатомных к этому значению добавляется также средняя энергия вращения и их колебаний около положения . Внутренняя энергия 1

Внутренняя энергия - это энергия движения и взаимодействия молекул .

Кинетическая энергия всех молекул, из которых состоит тело, и потенциальная энергия их взаимодействия составляют внутреннюю энергию тела.

При остановке тела механическое движение прекращается, но зато усиливается беспорядочное (тепловое) движение его молекул. Механическая энергия превращается во внутреннюю энергию тела

Внутренняя энергия зависит от температуры тела, агрегатного состояния вещества и других факторов.

Внутренняя энергия тела не зависит ни от механического движения тела, ни от положения этого тела относительно других тел.

Если рассматривать кинетическую и потенциальную энергию одной молекулы, то это очень маленькая величина, ведь масса молекулы мала. Поскольку в теле содержится множество молекул, то внутренняя энергия тела, равная сумме энергий всех молекул, будет велика.

Способы изменения внутренней энергии

При повышении температуры внутренняя энергия тела увеличивается, так как увеличивается средняя скорость движения молекул этого тела. С понижением температуры, наоборот, внутренняя энергия тела уменьшается.

Опыт: если нагреть бутылку с резиновой пробкой, то пробка через некоторое время вылетит.

Таким образом, внутренняя энергия тела меняется при изменении скорости движения молекул.

Внутреннюю энергию можно изменить двумя способами:

1) совершая механическую работу. Внутренняя энергия увеличивается, если над телом совершают работу, а уменьшается, если тело совершает работу.

2) путем теплопередачи (теплопроводностью, конвекцией, излучением). Если тело отдаёт тепло, то внутренняя энергия уменьшается, а если принимает тепло, то она увеличивается.

Виды теплопередачи. Опыты, иллюстрирующие виды теплопередачи. Теплопередача в природе, технике, механике.

Теплообмен (теплопередача) - это процесс изменения внутренней энергии, происходящий без совершения работы.

1)

Теплопроводность - вид теплопередачи, при котором энергия передается от одного тела к другому при соприкосновении или от одной его части к другой. Разные вещества имеют разную теплопроводность. Теплопроводность у металлов большая, у жидкостей - меньше, у газов - низкая. При теплопроводности не происходит переноса вещества.

2) Конвекция - вид теплопередачи, при котором энергия переносится струями газа и жидкости. Существует два вида конвекции: естественная и вынужденная. В твердых телах конвекции нет, так как их частицы не обладают большой подвижностью. Много проявлений конвекции можно обнаружить в природе и жизни человека. Конвекция также находит применение в технике.


3) Излучение - вид теплопередачи, при котором энергия переносится электромагнитными волнами. Тела с темной поверхностью лучше поглощают и излучают энергию, чем тела, имеющие светлую поверхность. Это используется на практике.

* При теплообмене кол-во отданной теплоты равно по модулю кол-ву полученной теплоты, или их сумма равно нулю. Это называется уровнем теплового баланса.



Рассказать друзьям