Закон сохранения кинетической энергии примеры. Закон сохранения энергии - основа основ

💖 Нравится? Поделись с друзьями ссылкой

Чтобы иметь возможность охарактеризовать энергетические характеристики движения, было введено понятие механической работы. И именно ей в её разных проявлениях посвящена статья. Для понимания тема одновременно и лёгкая, и довольно сложная. Автор искренне старался сделать её более понятной и доступной для понимания, и остаётся только надеяться, что цель достигнута.

Что называют механической работой?

Что же так называют? Если над телом работает какая-то сила, и в результате действия оной тело перемещается, то это и называется механической работой. При подходе с точки зрения научной философии здесь можно выделить несколько дополнительных аспектов, но в статье будет тема раскрыта с точки зрения физики. Механическая работа - это не сложно, если хорошо вдуматься в написанные здесь слова. Но слово "механическая" обычно не пишется, и всё сокращается до слова «работа». Но не каждая работа является механической. Вот сидит человек и думает. Работает ли он? Мысленно да! Но механическая ли это работа? Нет. А если человек идёт? Если тело перемещается под действием силы, то это механическая работа. Всё просто. Иными словами, сила, действующая на тело, совершает (механическую) работу. И ещё: именно работой можно охарактеризовать результат действия определённой силы. Так ечли человек идёт, то определённые силы (трения, тяжести и т.д.) совершают над человеком механическую работу, и в результате их действия человек меняет точку своего нахождения, другими словами перемещается.

Работа как физическая величина равняется силе, что действует на тело, множимой на путь, который совершило тело под влиянием этой силы и в направлении, указываемом ею. Можно сказать, что механическая работа была сделана, если одновременно было соблюдено 2 условия: сила действовала на тело, и оно переместилось в направление её действия. Но она не совершалась или не совершается, если сила действовала, а тело не поменяло свое местонахождение в системе координат. Вот небольшие примеры, когда механическая работа не совершается:

  1. Так человек может навалиться на огромный валун с целью сдвинуть его, но сил не хватает. Сила действует на камень, а он не перемещается, и работа не происходит.
  2. Тело движется в системе координат, а сила равняется нулю или они все компенсировались. Такое можно наблюдать во время движения по инерции.
  3. Когда направление, в котором двигается тело, перпендикулярно действию силы. Когда поезд двигается по горизонтальной линии, то сила тяжести свою работу не совершает.

Зависимо от определённых условий механическая работа бывает отрицательной и положительной. Так, если направления и силы, и движения тела одинаковы, то происходит положительная работа. Примером положительной работы является действие силы тяжести на падающую каплю воды. Но если сила и направление движения противоположны, то значит происходит отрицательная механическая работа. Примером уже такого варианта является поднимающийся вверх воздушный шарик и сила тяжести, которая совершает отрицательную работу. Когда тело поддаётся влиянию нескольких сил, такая работа называется "работой результирующей силы".

Особенности практического применения (кинетическая энергия)

Переходим от теории к практической части. Отдельно следует поговорить о механической работе и её использовании в физике. Как многие наверняка вспомнили, вся энергия тела делится на кинетическую и потенциальную. Когда объект находится в положении равновесия и никуда не движется, его потенциальная энергия равняется общей энергии, а кинетическая равняется нулю. Когда начинается движение, потенциальная энергия начинает уменьшаться, кинетическая расти, но в сумме они равняются общей энергии объекта. Для материальной точки кинетическую энергию определяют как работу силы, которая ускорила точку от нуля до значения Н, а в формульном виде кинетика тела равна ½*М*Н, где М - масса. Чтобы узнать кинетическую энергию объекта, который состоит из множества частиц, необходимо найти сумму всей кинетической энергии частиц, и это будет кинетическая энергия тела.

Особенности практического применения (потенциальная энергия)

В случае, когда все действующие на тело силы консервативны, и потенциальная энергия равняется общей, то работа не совершается. Этот постулат известен как закон сохранения механической энергии. Механическая энергия в замкнутой системе является постоянной во временном интервале. Закон сохранения широко используют для решения задач из классической механики.

Особенности практического применения (термодинамика)

В термодинамике работа, которую совершает газ при расширении, рассчитывают по интегралу умножения давления на объем. Такой подход применим не только в тех случаях, когда есть точная функция объема, но и ко всем процессам, что могут быть отображены в плоскости давление/объем. Также применяется знание о механической работе не только к газам, но и ко всему, что может оказать давление.

Особенности практического применения на практике (теоретическая механика)

В теоретической механике все вышеописанные свойства и формулы рассматриваются более детально, в частности это проекции. Она даёт и свое определение для различных формул механической работы (пример определения для интеграла Риммера): предел, до которого стремится сумма всех сил элементарных работ, когда мелкость разбиения стремится к нулевому значению, называется работой силы вдоль кривой. Наверное, сложно? Но ничего, с теоретической механикой всё. Да уже и вся механическая работа, физика и другие сложности закончились. Дальше будут только примеры и заключение.

Единицы измерения механической работы

Для измерения работы в СИ используются джоули, а СГС использует эрг:

  1. 1 Дж = 1 кг·м²/с² = 1 Н·м
  2. 1 эрг = 1 г·см²/с² = 1 дин·см
  3. 1 эрг = 10 −7 Дж

Примеры механической работы

Для того чтобы разобраться окончательно с таким понятием как механическая работа, следует изучить несколько отдельных примеров, которые позволят рассмотреть её с множества, но далеко не всех сторон:

  1. Когда человек поднимает руками камень, то происходит механическая работа с помощью мускульной силы рук;
  2. Когда по рельсам едет поезд, его тянет сила тяги тягача (электровоза, тепловоза и т.д.);
  3. Если взять ружье и выстрелить из него, то благодаря силе давления, которую создадут пороховые газы, будет сделана работа: пуля перемещена вдоль ствола ружья одновременно с увеличением скорости самой пули;
  4. Механическая работа есть и тогда, когда сила трения действует на тело, заставляя его уменьшить скорость своего движения;
  5. Вышеописанный пример с шарами, когда они поднимаются в противоположную сторону относительно направления силы тяжести, тоже является примером механической работы, но кроме силы тяжести действует ещё и сила Архимеда, когда вверх поднимается всё, что легче воздуха.

Что такое мощность?

Напоследок хочется затронуть тему мощности. Работу силы, которая совершается в одну единицу времени, и называют мощностью. По сути мощность - это такая физическая величина, которая является отображением отношения работы к определённому промежутку времени, во время которого эта работа и совершалась: М=Р/В, где М - мощность, Р - работа, В - время. Единицу мощности в СИ обозначают в 1 Вт. Ватт равняется мощности, которая совершает работу в один джоуль за одну секунду: 1 Вт=1Дж\1с.

1. Из курса физики 7 класса вы знаете, что если на тело действует сила и оно перемещается в направлении действия силы, то сила совершает механическую работу A , равную произведению модуля силы и модуля перемещения:

A =Fs .

Единица работы в СИ -джоуль (1 Дж ).

[A ] = [F ][s ] = 1 H 1 м = 1 Н м = 1 Дж.

За единицу работы принимают такую работу, которую совершает сила 1 Н на пути 1 м.

Из формулы следует, что механическая работа не совершается, если сила равна нулю (тело покоится или движется равномерно и прямолинейно) или перемещение равно нулю.

Предположим, что вектор силы, действующей на тело, составляет некоторый угол a с вектором перемещения (рис. 65). Так как в вертикальном направлении тело не перемещается, то проекция силы F y на ось Y работу не совершает, а проекция силы F x на ось X совершает работу, которая равна A = F x s x .

Поскольку F x = F cos a, а s x = s , то

A = Fs cos a.

Таким образом,

работа постоянной силы равна произведению модулей векторов силы и перемещения и косинуса угла между этими векторами.

2. Проанализируем полученную формулу работы.

Если угол a = 0°, то cos 0° = 1 и A = Fs . Совершенная работа положительна и ее значение максимально, если направление силы совпадает с направлением перемещения.

Если угол a = 90°, то cos 90° = 0 и A = 0. Сила не совершает работу, если она перпендикулярна направлению перемещения тела. Так, работа силы тяжести равна нулю при движении тела по горизонтальной плоскости. Нулю равна работа силы, сообщающей телу центростремительное ускорение при его равномерном движении по окружности, так как эта силав любой точке траектории перпендикулярна направлению движения тела.

Если угол a = 180°, то cos 180° = –1 и A = –Fs . Данный случай имеет место тогда, когда сила и перемещение направлены в противоположные стороны. Соответственно совершенная работа отрицательна и ее значение максимально. Отрицательную работу совершает, например, сила трения скольжения, поскольку она направлена в сторону, противоположную направлению перемещения тела.

Если угол a между векторами силы и перемещения острый, то работа положительна; если угол a тупой, то работа отрицательна.

3. Получим формулу для расчета работы силы тяжести. Пусть тело массой m свободно падает на землю из точки A , находящейся на высоте h относительно поверхности Земли, и через некоторое время оказывается в точке B (рис. 66, а ). Работа силы тяжести при этом равна

A = Fs = mgh .

В данном случае направление движения тела совпадает с направлением действу.щей на него силы, поэтому работа силы тяжести при свободном падении положительна.

Если тело движется вертикально вверх из точки B в точку A (рис. 66, б ), то его перемещение направлено в сторону, противоположную силе тяжести, и работа силы тяжести отрицательна:

A = –mgh

4. Работу силы можно вычислить, используя график зависимости силы от перемещения.

Предположим, под действием постоянной силы тяжести тело совершает перемещение. Графиком зависимости модуля силы тяжести F тяж от модуля перемещения тела s является прямая, параллельная оси абсцисс (рис. 67). Найдем площадь выделенного прямоугольника. Она равна произведению двух его сторон: S = F тяж h = mgh . С другой стороны, этой же величине равна работа силы тяжестиA = mgh .

Таким образом, работа численно равна площади прямоугольника, ограниченного графиком, координатными осями и перпендикуляром, восставленным к оси абсцисс в точке h .

Рассмотрим теперь случай, когда сила, действующая на тело, прямо пропорциональна перемещению. Такой силой, как известно, является сила упругости. Ее модуль равен F упр = k Dl , где Dl - удлинение тела.

Предположим, пружину, левый конец которой закреплен, сжали (рис. 68, а ). При этом ее правый конец сместился на Dl 1 .В пружине возник сила упругости F упр 1 , направленная вправо.

Если теперь предоставить пружину самой себе, то ее правый конец переместится вправо (рис. 68, б ), удлинение пружины будет равно Dl 2 , а сила упругости F упр 2 .

Вычислим работу силы упругости при перемещении конца пружины из точкис координатой Dl 1 в точку с координатой Dl 2 . Используем для этого график зависимости F упр (Dl ) (рис. 69). Работа силы упругости численно равна площади трапеции ABCD . Площадь трапеции равна произведению полусуммы оснований и высоты, т. е. S = AD . В трапеции ABCD основания AB = F упр 2 = k Dl 2 , CD = F упр 1 = k Dl 1 , а высота AD = Dl 1 – Dl 2 . Подставим в формулу площади трапеции эти величины:

S = (Dl 1 – Dl 2) =– .

Таким образом, мы получили, что работа силы упругости равна:

A =– .

5 * . Предположим, что тело массой m перемещается из точки A в точку B (рис. 70), двигаясь сначала без трения по наклонной плоскости из точки A в точку C , а затем без трения по горизонтальной плоскости из точки C в точку B . Работа силы тяжести на участке CB равна нулю, поскольку сила тяжести перпендикулярна перемещению. При движении по наклонной плоскости работа силы тяжести равна:

A AC = F тяж l sin a. Так как l sin a = h , то A AC = Ft тяж h = mgh .

Работа силы тяжести при движении тела по траектории ACB равна A ACB = A AC + A CB = mgh + 0.

Таким образом, A ACB = mgh .

Полученный результат показывает, что работа силы тяжести не зависит от формы траектории. Она зависит только от начального и конечного положений тела.

Предположим теперь, что тело движется по замкнутой траектории ABCA (см. рис. 70). При перемещении тела из точки A в точку B по траектории ACB работа силы тяжести равна A ACB = mgh . При перемещении тела из точки B в точку A сила тяжести совершает отрицательную работу, которая равна A BA = –mgh . Тогда работа силы тяжести на замкнутой траектории A = A ACB + A BA = 0.

Нулю равна и работа силы упругости на замкнутой траектории. Действительно, предположим, что недеформированную вначале пружину растянули и ее длина увеличилась на Dl . Сила упругости при этом совершила работу A 1 = . При возвращении в состояние равновесия сила упругости совершает работу A 2 = . Суммарная работа силы упругости при растяжении пружины и ее возвращении в недеформированное состояние равна нулю.

6. Работа силы тяжести и силы упругости на замкнутой траектории равна нулю.

Силы, работа которых на любой замкнутой траектории равна нулю (или не зависит от формы траектории), называют консервативными.

Силы, работа которых зависит от формы траектории, называют неконсервативными.

Неконсервативной является сила трения. Например, тело перемещается из точки 1 в точку 2 сначала по прямой 12 (рис. 71), а затем по ломаной линии 132 . На каждом участке траектории сила трения одинакова. В первом случае работа силы трения

A 12 = –F тр l 1 ,

а во втором -

A 132 = A 13 + A 32 , A 132 = –F тр l 2 – F тр l 3 .

Отсюда A 12 A 132 .

7. Из курса физики 7 класса вы знаете, что важной характеристикой устройств, которые совершают работу, является мощность .

Мощностью называют физическую величину, равную отношению работы к промежутку времени, за который она совершена:

N = .

Мощность характеризует быстроту выполнения работы.

Единица мощности в СИ - ватт (1 Вт ).

[N ] === 1 Вт.

За единицу мощности принимают такую мощность, при которой работа 1 Дж совершается за 1 с.

Вопросы для самопроверки

1. Что называют работой? Какова единица работы?

2. В каком случае сила совершает отрицательную работу; положительную работу?

3. По какой формуле вычисляют работу силы тяжести; силы упругости?

5. Какие силы называют консервативными; неконсервативными?

6 * . Докажите, что работа силы тяжести и силы упругости не зависит от формы траектории.

7. Что называют мощностью? Какова единица мощности?

Задание 18

1. Мальчика массой 20 кг везут равномерно на санках, прикладывая силу 20 Н. Веревка, за которую тянут санки, составляет угол 30° с горизонтом. Чему равна работа силы упругости, возникающей в веревке, если санки переместились на 100 м?

2. Спортсмен массой 65 кг прыгает в воду с вышки, находящейся на высоте 3 м над поверхностью воды. Какую работу совершает сила тяжести, действующая на спортсмена, при его движении до поверхности воды?

3. Под действием силы упругости длина деформированной пружины жесткостью 200 Н/м уменьшилась на 4 см. Чему равна работа силы упругости?

4 * . Докажите, что работа переменной силы численно равна площади фигуры, ограниченной графиком зависимости силы от координаты и координатными осями.

5. Чему равна сила тяги двигателя автомобиля, если при постоянной скорости 108 км/ч он развивает мощность 55 кВт?

Вы знаете, что такое работа? Вне всякого сомнения. Что такое работа, знает каждый человек, при условии, что он рожден и живет на планете Земля. А что такое механическая работа?

Это понятие тоже известно большинству людей на планете, хотя некоторые отдельные личности и имеют довольно смутное представление об этом процессе. Но речь сейчас не о них. Еще меньшее число людей имеют представление, что такое механическая работа с точки зрения физики. В физике механическая работа - это не труд человека ради пропитания, это физическая величина, которая может быть совершенно никак не связана ни с человеком, ни с другим каким-нибудь живым существом. Как так? Сейчас разберемся.

Механическая работа в физике

Приведем два примера. В первом примере воды реки, столкнувшись с пропастью, шумно падают вниз в виде водопада. Второй пример - это человек, который держит на вытянутых руках тяжелый предмет, например, удерживает надломившуюся крышу над крыльцом дачного домика от падения, пока его жена и дети судорожно ищут, чем ее подпереть. В каком случае совершается механическая работа?

Определение механической работы

Практически все, не задумываясь, ответят: во втором. И будут неправы. Дело обстоит как раз наоборот. В физике механическая работа описывается следующими определениями: механическая работа совершается тогда, когда на тело действует сила, и оно движется. Механическая работа прямо пропорциональна приложенной силе и пройденному пути.

Формула механической работы

Определяется механическая работа формулой:

где A - работа,
F - сила,
s - пройденный путь.

Так что, несмотря на весь героизм уставшего держателя крыши, проделанная им работа равна нулю, а вот вода, падая под действием силы тяжести с высокого утеса, совершает самую, что ни на есть, механическую работу. То есть, если мы будем толкать тяжелый шкаф безуспешно, то проделанная нами работа с точки зрения физики будет равна нулю, несмотря на то, что мы прикладываем много сил. А вот если мы сдвинем шкаф на некоторое расстояние, то тогда мы проделаем работу, равную произведению приложенной силы на расстояние, на которое мы передвинули тело.

Единица работы - 1 Дж. Это работа, совершенная силой в 1 ньютон, по передвижению тела на расстояние в 1 м. Если направление приложенной силы совпадает с направлением движения тела, то данная сила совершает положительную работу. Пример - это когда мы толкаем какое-либо тело, и оно двигается. А в случае, когда сила приложена в противоположную движению тела сторону, например, сила трения , то данная сила совершает отрицательную работу. Если же приложенная сила никак не влияет на движение тела, то сила, совершаемая этой работой, равна нулю.

Знают все. Даже дети работают, в детском садике - малышами. Однако общепринятое, бытовое представление далеко не то же самое, что понятие механическая работа в физике. Вот, например, человек стоит и держит в руках сумку. В обычном понимании он выполняет работу, удерживая груз. Однако с точки зрения физики ничего подобного он не совершает. В чем тут дело?

Раз появляются такие вопросы, самое время вспомнить определение. Когда на предмет действует сила, и под ее действием тело перемещается, то выполняется механическая работа. Эта величина пропорциональна пройденному телом пути и приложенной силе. Существует еще дополнительная зависимость от направления приложения силы и направления движения тела.

Таким образом, мы ввели такое понятие как механическая работа. Физика определяет ее как произведение величины силы и перемещения, умноженное на значение косинуса угла, имеющегося в самом общем случае между ними. В качестве примера можно рассмотреть несколько случаев, которые позволят лучше узнать, что под этим понимается.

Когда механическая работа не совершается? Стоит грузовик, мы его толкаем, а он не движется. Сила приложена, а перемещения нет. Совершаемая работа равно нулю. А вот другой пример - мама везет ребенка в коляске, в этом случае работа совершается, приложена сила, коляска перемещается. Разница в двух описанных случаях в наличии перемещения. И соответственно, работа выполняется (пример с коляской) или не выполняется (пример с грузовиком).

Другой случай - мальчик на велосипеде разогнался и спокойно катится по дорожке, педали не крутит. Работа выполняется? Нет, хотя перемещение есть, но нет приложенной силы, движение осуществляется по инерции.

Еще один пример - лошадь везет телегу, на ней сидит возница. Совершает ли он работу? Перемещение есть, приложенная сила есть (вес возницы воздействует на телегу), а вот работа не выполняется. Угол между направлением перемещения и направлением действия силы составляет 90 градусов, а косинус угла 90° равен нулю.

Приведенные примеры позволяют понять, что механическая работа - это не просто произведение двух величин. Оно должно также учитывать, как эти величины направлены. Если направление перемещения и направление действия силы совпадают, то результат будет положительным, если направление перемещения происходит против направления приложения силы, то результат будет отрицательным (например, работа, совершаемая силой трения при перемещении груза).

Кроме того, необходимо учесть, что действующая на тело сила может быть результирующей нескольких сил. Если это так, то работа всех приложенных к телу сил равна работе, совершаемой результирующей силой. Работа измеряется в джоулях. Один джоуль равен работе, которую совершает сила в один ньютон при передвижении тела на один метр.

Из рассмотренных примеров можно сделать крайне любопытный вывод. Когда мы рассматривали возницу на телеге, то определили, что он не совершает работу. Работа совершается в горизонтальной плоскости, потому что именно там производится перемещение. Но ситуация немного изменится, когда мы будем рассматривать пешехода.

При ходьбе центр тяжести человека не остается неподвижным, он движется в вертикальной плоскости и, значит, совершает работу. А так как движение направлено против то работа будет происходить против направления действия Пусть перемещение и небольшое, но при длительной ходьбе организму придется совершать дополнительную работу. Так что правильная походка сокращает эту лишнюю работу и уменьшает утомляемость.

Проанализировав нескольких простых жизненных ситуаций, выбранных в качестве примеров, и воспользовавшись знанием о том, что такое механическая работа, мы рассмотрели основные ситуации ее проявления, а также когда и какая работа выполняется. Определили, что такое понятие как работа в быту и в физике носит разный характер. И установили с помощью применения физических законов, что неправильная походка вызывает дополнительную утомляемость.

Механическая работа это энергетическая характеристика движения физических тел, имеющая скалярный вид. Она равна модулю силы действующей на тело, умноженной на модуль перемещения вызванного этой силой и на косинус угла между ними.

Формула 1 - Механическая работа.


F - Сила, действующая на тело.

s - Перемещение тела.

cosa - Косинус угла между силой и перемещением.

Данная формула имеет общий вид. В случае если угол между прикладываемой силой и перемещением равен нулю, то косинус равен 1. Соответственно работа будет равна только произведению силы на перемещение. Проще говоря, если тело движется в направлении приложения силы, то механическая работа равна произведению силы на перемещение.

Второй частный случай, когда угол между силой, действующей на тело и его перемещением равен 90 градусов. В этом случае косинус 90 градусов равен нулю, соответственно работа будет равна нулю. И действительно, что происходит мы, прикладываем силу в одном направлении, а тело движется перпендикулярно ему. То есть тело движется явно не под действием нашей силы. Таким образом, работа нашей силы по перемещению тела равна нулю.

Рисунок 1 - Работа сил при перемещении тела.


В случае если на тело действует больше одной силы, то рассчитывают суммарную силу, действующую на тело. И далее ее подставляют в формулу как единственную силу. Тело под действием силы может перемещаться не только прямолинейно, но и по произвольной траектории. В этом случае работа вычисляется для малого участка перемещения, который можно считать прямолинейным и далее суммируется по всему пути.

Работа может быть как положительной, так и отрицательной. То есть если перемещение и сила совпадают по направлению, то работа положительна. А если сила приложена в одном направлении, а тело перемещается в другом, то работа будет отрицательна. Примером отрицательной работы может служить работа силы трения. Так как сила трения направлена встречно движению. Представьте себе, тело движется по плоскости. Сила, приложенная к телу, толкает его в определенном направлении. Эта сила совершает положительную работу по перемещению тела. Но при этом сила трения совершает отрицательную работу. Она тормозит перемещение тела и направлена навстречу его движению.

Рисунок 2 - Сила движения и трения.


Работа в механике измеряется в Джоулях. Один Джоуль это работа совершаемая силой в один Ньютон при перемещении тела на один метр. Кроме направления движения тела может меняться и величина прилагаемой силы. К примеру, при сжатии пружины, сила прилагаемой к ней будет увеличиваться пропорционально пройденному расстоянию. В этом случае работу вычисляют по формуле.

Формула 2 - Работа сжатия пружины.


k - жесткость пружины.

x - координата перемещения.



Рассказать друзьям