Почему на человеке чернеет серебро. Причины почернения серебра на шее человека

💖 Нравится? Поделись с друзьями ссылкой

Используя тот или иной механизм, мы совершаем работу, всегда превышающую ту, которая необходима для достижения поставленной цели. В соответствии с этим различают полную или затраченную работу A з и полезную работу A п . Если, например, наша цель - поднять груз массой m на высоту h , то полезная работа - это та, которая обусловлена лишь преодолением силы тяжести, действующей на груз. При равномерном подъеме груза, когда прикладываемая нами сила равна силе тяжести груза, эта работа может быть найдена следующим образом:

A п = F т h = mgh . (24.1)

Если же мы применяем для подъема груза блок или какой-либо другой механизм, то, кроме силы тяжести груза, нам приходится преодолевать еще и силу тяжести частей механизма, а также действующую в механизме силу трения. Например, используя подвижный блок, мы вынуждены будем совершать дополнительную работу по подъему самого блока с тросом и по преодолению силы трения в оси блока. Кроме того, выигрывая в силе, мы всегда проигрываем в пути (об этом подробнее будет рассказано ниже), что также влияет на работу. Все это приводит к тому, что затраченная нами работа оказывается больше полезной:

A з > A п

Полезная работа всегда составляет лишь некоторую часть полной работы, которую совершает человек, используя механизм.

Физическая величина, показывающая, какую долю составляет полезная работа от всей затраченной работы, называется коэффициентом полезного действия механизма.

Сокращенное обозначение коэффициента полезного действия - КПД.

Чтобы найти КПД механизма, надо полезную работу разделить на ту, которая была затрачена при использовании данного механизма.

Коэффициент полезного действия часто выражают в процентах и обозначают греческой буквой η (читается «эта»):

η =* 100% (24.2)

Поскольку числитель A п в этой формуле всегда меньше знаменателя A з , то КПД всегда оказывается меньше 1 (или 100%).

Конструируя механизмы, стремятся увеличить их КПД. Для этого уменьшают трение в осях механизмов и их массу. В тех случаях, когда трение ничтожно мало и используемые механизмы имеют массу, пренебрежимо малую по сравнению с массой поднимаемого груза, коэффициент полезного действия оказывается лишь немного меньше 1. В этом случае затраченную работу можно считать примерно равной полезной работе:

A з ≈ A п (24.3)

Следует помнить, что выигрыша в работе с помощью простого механизма получить нельзя.

Поскольку каждую из работ в равенстве (24.3) можно выразить в виде произведения соответствующей силы на пройденный путь, то это равенство можно переписать так:

F 1 s 1 ≈ F 2 s 2 (24.4)

Отсюда следует, что,

выигрывая с помощью механизма в силе, мы во столько же раз проигрываем в пути, и наоборот.

Этот закон называют «золотым правилом» механики . Его автором является древнегреческий ученый Герон Александрийский, живший в I в. н. э.

«Золотое правило» механики является приближенным законом, так как в нем не учитывается работа по преодолению трения и силы тяжести частей используемых приспособлений. Тем не менее оно бывает очень полезным при анализе работы любого простого механизма.

Так, например, благодаря этому правилу мы сразу можем сказать, что рабочему, изображенному на рисунке 47, при двукратном выигрыше в силе для подъема груза на 10 см придется опустить противоположный конец рычага на 20 см. То же самое будет и в случае, изображенном на рисунке 58. Когда рука человека, держащего веревку, опустится на 20 см, груз, прикрепленный к подвижному блоку, поднимется лишь на 10 см.

1. Почему затраченная при использовании механизмов работа оказывается все время больше полезной работы? 2. Что называют коэффициентом полезного действия механизма? 3. Может ли КПД механизма быть равным 1 (или 100%)? Почему? 4. Каким образом увеличивают КПД? 5. В чем заключается «золотое правило» механики? Кто его автор? 6. Приведите примеры проявления «золотого правила» механики при использовании различных простых механизмов.

Современные реалии предполагают широкую эксплуатацию тепловых двигателей. Многочисленные попытки замены их на электродвигатели пока претерпевают неудачу. Проблемы, связанные с накоплением электроэнергии в автономных системах, решаются с большим трудом.

Все еще актуальны проблемы технологии изготовления аккумуляторов электроэнергии с учетом их длительного использования. Скоростные характеристики электромобилей далеки от таковых у авто на двигателях внутреннего сгорания.

Первые шаги по созданию гибридных двигателей позволяют существенно уменьшить вредные выбросы в мегаполисах, решая экологические проблемы.

Немного истории

Возможность превращения энергии пара в энергию движения была известна еще в древности. 130 год до нашей эры: Философ Герон Александрийский представил на суд зрителей паровую игрушку - эолипил. Сфера, заполненная паром, приходила во вращение под действием исходящих из нее струй. Этот прототип современных паровых турбин в те времена не нашел применения.

Долгие годы и века разработки философа считались лишь забавной игрушкой. В 1629 г. итальянец Д. Бранки создал активную турбину. Пар приводил в движение диск, снабженный лопатками.

С этого момента началось бурное развитие паровых машин.

Тепловая машина

Превращение топлива в энергию движения частей машин и механизмов используется в тепловых машинах.

Основные части машин: нагреватель (система получения энергии извне), рабочее тело (совершает полезное действие), холодильник.

Нагреватель предназначен для того, чтобы рабочее тело накопило достаточный запас внутренней энергии для совершения полезной работы. Холодильник отводит излишки энергии.

Основной характеристикой эффективности называют КПД тепловых машин. Эта величина показывает, какая часть затраченной на нагревание энергии расходуется на совершение полезной работы. Чем выше КПД, тем выгоднее работа машины, но эта величина не может превышать 100%.

Расчет коэффициента полезного действия

Пусть нагреватель приобрел извне энергию, равную Q 1 . Рабочее тело совершило работу A, при этом энергия, отданная холодильнику, составила Q 2 .

Исходя из определения, рассчитаем величину КПД:

η= A / Q 1 . Учтем, что А = Q 1 - Q 2.

Отсюда КПД тепловой машины, формула которого имеет вид η= (Q 1 - Q 2)/ Q 1 = 1 - Q 2 / Q 1, позволяет сделать следующие выводы:

  • КПД не может превышать 1 (или 100%);
  • для максимального увеличения этой величины необходимо либо повышение энергии, полученной от нагревателя, либо уменьшение энергии, отданной холодильнику;
  • увеличения энергии нагревателя добиваются изменением качества топлива;
  • уменьшения энергии, отданной холодильнику, позволяют добиться конструктивные особенности двигателей.

Идеальный тепловой двигатель

Возможно ли создание такого двигателя, коэффициент полезного действия которого был бы максимальным (в идеале - равным 100%)? Найти ответ на этот вопрос попытался французский физик-теоретик и талантливый инженер Сади Карно. В 1824 его теоретические выкладки о процессах, протекающих в газах, были обнародованы.

Основной идеей, заложенной в идеальной машине, можно считать проведение обратимых процессов с идеальным газом. Начинаем с расширения газа изотермически при температуре T 1 . Количество теплоты, необходимой для этого, - Q 1. После газ без теплообмена расширяется Достигнув температуры Т 2 , газ сжимается изотермически, передавая холодильнику энергию Q 2 . Возвращение газа в первоначальное состояние производится адиабатно.

КПД идеального теплового двигателя Карно при точном расчете равен отношению разности температур нагревательного и охлаждающего устройств к температуре, которую имеет нагреватель. Выглядит это так: η=(T 1 - Т 2)/ T 1.

Возможный КПД тепловой машины, формула которого имеет вид: η= 1 - Т 2 / T 1 , зависит только от значения температур нагревателя и охладителя и не может быть более 100%.

Более того, это соотношение позволяет доказать, что КПД тепловых машин может быть равен единице только при достижении холодильником температур. Как известно, это значение недостижимо.

Теоретические выкладки Карно позволяют определить максимальный КПД тепловой машины любой конструкции.

Доказанная Карно теорема звучит следующий образом. Произвольная тепловая машина ни при каких условиях не способна иметь коэффициент полезного действия больше аналогичного значения КПД идеальной тепловой машины.

Пример решения задач

Пример 1. Каков КПД идеальной тепловой машины, в случае если температура нагревателя составляет 800 о С, а температура холодильника на 500 о С ниже?

T 1 = 800 о С= 1073 К, ∆T= 500 о С=500 К, η - ?

По определению: η=(T 1 - Т 2)/ T 1.

Нам не дана температура холодильника, но ∆T= (T 1 - Т 2), отсюда:

η= ∆T / T 1 = 500 К/1073 К = 0,46.

Ответ: КПД = 46%.

Пример 2. Определите КПД идеальной тепловой машины, если за счет приобретенного одного килоджоуля энергии нагревателя совершается полезная работа 650 Дж. Какова температура нагревателя тепловой машины, если температура охладителя - 400 К?

Q 1 = 1 кДж=1000 Дж, А = 650 Дж, Т 2 = 400 К, η - ?, T 1 = ?

В данной задаче речь идет о тепловой установке, КПД которой можно вычислить по формуле:

Для определения температуры нагревателя воспользуемся формулой КПД идеальной тепловой машины:

η = (T 1 - Т 2)/ T 1 = 1 - Т 2 / T 1.

Выполнив математические преобразования, получим:

Т 1 = Т 2 /(1- η).

Т 1 = Т 2 /(1- A / Q 1).

Вычислим:

η= 650 Дж/ 1000 Дж = 0,65.

Т 1 = 400 К /(1- 650 Дж/ 1000 Дж) = 1142,8 К.

Ответ: η= 65%, Т 1 = 1142,8 К.

Реальные условия

Идеальный тепловой двигатель разработан с учетом идеальных процессов. Работа совершается только в изотермических процессах, ее величина определяется как площадь, ограниченная графиком цикла Карно.

В действительности создать условия для протекания процесса изменения состояния газа без сопровождающих его изменений температуры невозможно. Нет таких материалов, которые исключили бы теплообмен с окружающими предметами. Адиабатный процесс осуществить становится невозможно. В случае теплообмена температура газа обязательно должна меняться.

КПД тепловых машин, созданных в реальных условиях, значительно отличаются от КПД идеальных двигателей. Заметим, что протекание процессов в реальных двигателях происходит настолько быстро, что варьирование внутренней тепловой энергии рабочего вещества в процессе изменения его объема не может быть скомпенсировано притоком количества теплоты от нагревателя и отдачей холодильнику.

Иные тепловые двигатели

Реальные двигатели работают на иных циклах:

  • цикл Отто: процесс при неизменном объеме меняется адиабатным, создавая замкнутый цикл;
  • цикл Дизеля: изобара, адиабата, изохора, адиабата;
  • процесс, происходящий при постоянном давлении, сменяется адиабатным, замыкает цикл.

Создать равновесные процессы в реальных двигателях (чтобы приблизить их к идеальным) в условиях современной технологии не представляется возможным. КПД тепловых машин значительно ниже, даже с учетом тех же температурных режимов, что и в идеальной тепловой установке.

Но не стоит уменьшать роль расчетной формулы КПД поскольку именно она становится точкой отсчета в процессе работы над повышением КПД реальных двигателей.

Пути изменения КПД

Проводя сравнение идеальных и реальных тепловых двигателей, стоит отметить, что температура холодильника последних не может быть любой. Обычно холодильником считают атмосферу. Принять температуру атмосферы можно только в приближенных расчетах. Опыт показывает, что температура охладителя равна температуре отработанных в двигателях газов, как это происходит в двигателях внутреннего сгорания (сокращенно ДВС).

ДВС - наиболее распространенная в нашем мире тепловая машина. КПД тепловой машины в этом случае зависит от температуры, созданной сгорающим топливом. Существенным отличием ДВС от паровых машин является слияние функций нагревателя и рабочего тела устройства в воздушно-топливной смеси. Сгорая, смесь создает давление на подвижные части двигателя.

Повышения температуры рабочих газов достигают, существенно меняя свойства топлива. К сожалению, неограниченно это делать невозможно. Любой материал, из которого изготовлена камера сгорания двигателя, имеет свою температуру плавления. Теплостойкость таких материалов - основная характеристика двигателя, а также возможность существенно повлиять на КПД.

Значения КПД двигателей

Если рассмотреть температура рабочего пара на входе которой равна 800 К, а отработавшего газа - 300 К, то КПД этой машины равно 62%. В действительности же эта величина не превышает 40%. Такое понижение возникает вследствие тепловых потерь при нагревании корпуса турбин.

Наибольшее значение внутреннего сгорания не превышает 44%. Повышение этого значения - вопрос недалекого будущего. Изменение свойств материалов, топлива - это проблема, над которой работают лучшие умы человечества.

Ни одно выполняемое действие не проходит без потерь - они есть всегда. Полученный результат всегда меньше тех усилий, которые приходится затрачивать для его достижения. О том, насколько велики потери при выполнении работы, и свидетельствует коэффициент полезного действия (КПД).

Что же скрывается за этой аббревиатурой? По сути дела, это коэффициент эффективности механизма или показатель рационального использования энергии. Величина КПД не имеет каких-то единиц измерения, она выражается в процентах. Определяется этот коэффициент как отношение полезной работы устройства к затраченной на его функционирование. Для вычисления КПД формула расчета будет выглядеть таким образом:

КПД =100* (полезная выполненная работа/затраченная работа)

В различных устройствах для расчета такого соотношения используются разные значения. Для электрических двигателей КПД будет выглядеть как отношение совершаемой полезной работы к электрической энергии, полученной из сети. Для будет определяться как отношение полезной совершаемой работы к затраченному количеству теплоты.

Для определения КПД необходимо, чтобы все разные и работа выражались в одних единицах. Тогда возможно будет сравнивать любые объекты, например генераторы электроэнергии и биологические объекты, с точки зрения эффективности.

Как уже отмечалось, из-за неизбежных потерь при работе механизмов коэффициент полезного действия всегда меньше 1. Так, КПД тепловых станций достигает 90%, у двигателей внутреннего сгорания КПД меньше 30%, КПД электрического трансформатора составляет 98%. Понятие КПД может применяться как к механизму в целом, так и к его отдельным узлам. При общей оценке эффективности механизма в целом (его КПД) берется произведение КПД отдельных составных частей этого устройства.

Проблема эффективного использования топлива появилась не сегодня. При непрерывном росте стоимости энергоресурсов вопрос повышения КПД механизмов превращается из чисто теоретического в вопрос практический. Если КПД обычного автомобиля не превышает 30%, то 70% своих денег, расходуемых на заправку топливом авто, мы просто выбрасываем.

Рассмотрение эффективности работы ДВС (двигателя внутреннего сгорания) показывает, что потери происходят на всех этапах его работы. Так, только 75% поступающего топлива сгорает в цилиндрах мотора, а 25% выбрасывается в атмосферу. Из всего сгоревшего топлива только 30-35% выделившегося тепла расходуется на выполнение полезной работы, остальное тепло или теряется с выхлопными газами, или остается в системе охлаждения автомобиля. Из полученной мощности на полезную работу используется около 80%, остальная мощность тратится на преодоление сил трения и используется вспомогательными механизмами автомобиля.

Даже на таком простом примере анализ эффективности работы механизма позволяет определить направления, в которых должны проводиться работы для сокращения потерь. Так, одно из приоритетных направлений - обеспечение полного сгорания топлива. Достигается это дополнительным распылением топлива и повышением давления, поэтому так популярны становятся двигатели с непосредственным впрыском и турбонаддувом. Тепло, отводимое из двигателя, используется для подогрева топлива с целью лучшей его испаряемости, а механические потери уменьшаются за счет использования современных сортов

Здесь нами рассмотрено такое понятие, как описано, что он собой представляет и на что влияет. Рассмотрена на примере ДВС эффективность его работы и определены направления и пути повышения возможностей этого устройства, а, следовательно, и КПД.

Упоминание о коэффициенте полезного действия встречается во многих статьях. Рассмотрим, что же такое КПД. Взбираясь по веревке, человек превращает запас своей химической энергии в потенциальную , но мощность, с которой он высвобождает химическую энергию, оказывается гораздо больше, так как при этом выделяется еще значительное количество тепла. Количество израсходованной химической энергии можно установить, собрав выдыхаемый альпинистом воздух и измерив его объем и содержание углекислого газа.

Эти данные позволяют вычислить потребность в питании, что в свою очередь может характеризовать полную мощность, развиваемую при подъеме.

Для любой тепловой машины отношение полезной мощности на выходе к полной мощности на входе называется коэффициентом полезного действия (сокращенно к.п.д.).

Если вспомнить, что мощность – это скорость передачи энергии и определяется она отношением: Мощность = Переданная энергия / время, то к.п.д. можно определить и как отношение полезной части энергии на выходе к полной энергии на входе.

Альпинист, поднимающийся по веревке, по-видимому, растрачивает большую часть своей энергии в виде тепла. Если рассматривать альпиниста как машину для поднятия груза (самого себя) за счет энергии питания, то к.п.д. его, по-видимому, очень мал. Электромотор берет из электрической сети большую мощность, нежели отдает приводимому в движение механизму. Разница связана с выделяемым в моторе теплом.

К.п.д. большого электрического мотора может составлять до 90%. Электромотор - это искусный передатчик энергии. При малой нагрузке он потребляет из сети малую мощ-ность. Если же его нагрузить, то он, продолжая вращаться с той да скоростью, соответственно потребует большую мощность. Полезную мощность мотора можно измерить механически, а полную мощность найти из показания вольтметра и амперметра.

Животным свойственна большая способность к перегрузке, но, с другой стороны, они очень экономичны при малой нагрузке. В течение короткого времени лошадь можно заставить давать больше 1 л. с. Если та же лошадь работает каждый день, но с затратой до-лей лошадиной силы, то ей соответственно будет требоваться меньше корма.

Просто о сложном – Что такое КПД – коэффициент полезного действия

  • Галерея изображений, картинки, фотографии.
  • Что такое КПД – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Что такое КПД.
  • Ссылки на материалы и источники – Что такое КПД – коэффициент полезного действия.
    Похожие записи

Главное значение полученной Карно формулы (5.12.2) для КПД идеальной машины состоит в том, что она определяет максимально возможный КПД любой тепловой машины.

Карно доказал, основываясь на втором законе термодинамики*, следующую теорему: любая реальная тепловая машина, работающая с нагревателем температуры Т 1 и холодильником температуры Т 2 , не может иметь коэффициент полезного действия, превышающий КПД идеальной тепловой машины.

* Карно фактически установил второй закон термодинамики до Клаузиуса и Кельвина, когда еще первый закон термодинамики не был сформулирован строго.

Рассмотрим вначале тепловую машину, работающую по обратимому циклу с реальным газом. Цикл может быть любым, важно лишь, чтобы температуры нагревателя и холодильника были Т 1 и Т 2 .

Допустим, что КПД другой тепловой машины (не работающей по циклу Карно) η’ > η. Машины работают с общим нагревателем и общим холодильником. Пусть машина Карно работает по обратному циклу (как холодильная машина), а другая машина - по прямому циклу (рис. 5.18). Тепловая машина совершает работу, равную согласно формулам (5.12.3) и (5.12.5):

Холодильную машину всегда можно сконструировать так, чтобы она брала от холодильника количество теплоты Q 2 = ||

Тогда согласно формуле (5.12.7) над ней будет совершаться работа

(5.12.12)

Так как по условию η" > η, то А" > А. Поэтому тепловая машина может привести в действие холодильную машину, да еще останется избыток работы. Эта избыточная работа совершается за счет теплоты, взятой от одного источника. Ведь холодильнику при действии сразу двух машин теплота не передается. Но это противоречит второму закону термодинамики.

Если допустить, что η > η", то можно другую машину заставить работать по обратному циклу, а машину Карно - по прямому. Мы опять придем к противоречию со вторым законом термодинамики. Следовательно, две машины, работающие по обратимым циклам, имеют одинаковые КПД: η" = η.

Иное дело, если вторая машина работает по необратимому циклу. Если допустить η" > η, то мы опять придем к противоречию со вторым законом термодинамики. Однако допущение т|" < г| не противоречит второму закону термодинамики, так как необратимая тепловая машина не может работать как холодильная машина. Следовательно, КПД любой тепловой машины η" ≤ η, или

Это и есть основной результат:

(5.12.13)

Кпд реальных тепловых машин

Формула (5.12.13) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: Т 1 = 800 К и Т 2 = 300 К. При этих температурах максимальное значение коэффициента полезного действия равно:

Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40%. Максимальный КПД - около 44% - имеют двигатели внутреннего сгорания.

Коэффициент полезного действия любого теплового двигателя не может превышать максимально возможного значения
, где Т 1 - абсолютная температура нагревателя, а Т 2 - абсолютная температура холодильника.

Повышение КПД тепловых двигателей и приближение его к максимально возможному - важнейшая техническая задача.



Рассказать друзьям